Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore.
Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore.
Sci Rep. 2018 Apr 24;8(1):6444. doi: 10.1038/s41598-018-24123-6.
The topography of the extracellular substrate provides physical cues to elicit specific downstream biophysical and biochemical effects in cells. An example of such a topographical substrate is periodic gratings, where the dimensions of the periodic gratings influence cell morphology and directs cell differentiation. We first develop a novel sample preparation technique using Spurr's resin to allow for cross-sectional transmission electron microscopy imaging of cells on grating grooves, and observed that the plasma membrane on the basal surface of these cells can deform and bend into grooves between the gratings. We postulate that such membrane bending is an important first step in eliciting downstream effects. Thus, we use a combination of image analysis and mathematical modeling to explain the extent of bending of basal membrane into grooves. We show that the extent to which the basal membrane bends into grooves depends on both groove width and angle of the grating ridge. Our model predicts that the basal membrane will bend into grooves when they are wider than 1.9 µm in width. The existence of such a threshold may provide an explanation for how the width of periodic gratings may bring about cellular downstream effects, such as cell proliferation or differentiation.
细胞外基质的拓扑结构为细胞提供了物理线索,以引发特定的下游生物物理和生化效应。这样的拓扑结构的一个例子是周期性光栅,其中周期性光栅的尺寸影响细胞形态并指导细胞分化。我们首先使用 Spurr 树脂开发了一种新的样品制备技术,允许对光栅凹槽上的细胞进行横截面透射电子显微镜成像,并且观察到这些细胞的基底表面的质膜可以变形并弯曲到光栅之间的凹槽中。我们假设这种膜弯曲是引发下游效应的重要第一步。因此,我们使用图像分析和数学建模的组合来解释基底膜弯曲到凹槽中的程度。我们表明,基底膜弯曲到凹槽中的程度取决于凹槽的宽度和光栅脊的角度。我们的模型预测,当凹槽的宽度大于 1.9μm 时,基底膜将弯曲到凹槽中。这种阈值的存在可能为周期性光栅的宽度如何带来细胞下游效应(例如细胞增殖或分化)提供了解释。