Suppr超能文献

密封聚二甲基硅氧烷微流体的大气压等离子体功能化:在毛细管泵送和增强细胞生长中的应用。

Atmospheric Pressure Plasma Functionalization of Sealed PDMS Microfluidics: Application to Capillary Pumping and Enhanced Cell Growth.

作者信息

Zeniou A, Kefallinou D, Dimitrakellis P, Xenogiannopoulou E, Grigoriou M, Dimoulas A, Boumpas D T, Tserepi A, Gogolides E

机构信息

Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Gregoriou Ε' and 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece.

Current address, Chemical Process and Energy Resources Institute (CPERI), Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi, 57001, Thessaloniki, Greece.

出版信息

Chempluschem. 2024 Dec;89(12):e202400290. doi: 10.1002/cplu.202400290. Epub 2024 Sep 25.

Abstract

Microfluidic devices serve as essential tools across diverse fields like medicine, biotechnology, and chemistry, enabling advancements in analytical techniques, point-of-care diagnostics, microfluidic cell cultures, and organ-on-chip models. While polymeric microfluidics are favoured for their cost-effectiveness and ease of fabrication, their inherent hydrophobic properties necessitate surface functionalization, often post-sealing. Here, we introduce a versatile apparatus for functionalizing sealed microfluidic devices using atmospheric plasma processing, with a focus on PDMS (polydimethylsiloxane) microfluidics. Through meticulous analysis of surface properties and capillary speed, before and after plasma treatment, along with a comparison between vacuum and atmospheric plasma functionalization methods, we demonstrate the efficacy of our approach. Subsequent experimentation within 3D PDMS microfluidic chambers, combining atmospheric pressure plasma treatment with collagen coating to facilitate mesenchymal stem cells (MSCs) growth over five days, reveals enhanced initial cell adhesion and proliferation, highlighting the potential of our method for improving cell-based applications within microfluidic systems.

摘要

微流控装置是医学、生物技术和化学等不同领域的重要工具,推动了分析技术、即时诊断、微流控细胞培养和芯片器官模型的发展。虽然聚合物微流控因其成本效益和易于制造而受到青睐,但其固有的疏水特性需要进行表面功能化处理,通常是在密封后进行。在此,我们介绍一种利用常压等离子体处理对密封微流控装置进行功能化的通用设备,重点是聚二甲基硅氧烷(PDMS)微流控。通过对等离子体处理前后表面性质和毛细管速度的细致分析,以及真空和常压等离子体功能化方法的比较,我们证明了我们方法的有效性。随后在3D PDMS微流控腔室内进行的实验,将常压等离子体处理与胶原蛋白涂层相结合,以促进间充质干细胞(MSCs)在五天内的生长,结果显示初始细胞粘附和增殖增强,突出了我们的方法在改善微流控系统中基于细胞的应用方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcbc/11639632/41d788e0038c/CPLU-89-e202400290-g004.jpg

相似文献

2
Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
Lab Chip. 2021 Aug 21;21(16):3053-3075. doi: 10.1039/d1lc00288k. Epub 2021 Jul 21.
4
Surface modifications to polydimethylsiloxane substrate for stabilizing prolonged bone marrow stromal cell culture.
Colloids Surf B Biointerfaces. 2020 Jul;191:110995. doi: 10.1016/j.colsurfb.2020.110995. Epub 2020 Apr 2.
5
The revolution of PDMS microfluidics in cellular biology.
Crit Rev Biotechnol. 2023 May;43(3):465-483. doi: 10.1080/07388551.2022.2034733. Epub 2022 Apr 11.
8
Improved cell adhesion under shear stress in PDMS microfluidic devices.
Colloids Surf B Biointerfaces. 2017 Feb 1;150:456-464. doi: 10.1016/j.colsurfb.2016.11.011. Epub 2016 Nov 9.
10
Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions.
Biomed Microdevices. 2014 Feb;16(1):91-6. doi: 10.1007/s10544-013-9808-2.

本文引用的文献

1
PDMS Bonding Technologies for Microfluidic Applications: A Review.
Biosensors (Basel). 2021 Aug 23;11(8):292. doi: 10.3390/bios11080292.
2
Endothelialization of PDMS-based microfluidic devices under high shear stress conditions.
Colloids Surf B Biointerfaces. 2021 Jan;197:111394. doi: 10.1016/j.colsurfb.2020.111394. Epub 2020 Oct 5.
3
Surface modifications to polydimethylsiloxane substrate for stabilizing prolonged bone marrow stromal cell culture.
Colloids Surf B Biointerfaces. 2020 Jul;191:110995. doi: 10.1016/j.colsurfb.2020.110995. Epub 2020 Apr 2.
5
Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development.
Cell Stem Cell. 2018 Mar 1;22(3):310-324. doi: 10.1016/j.stem.2018.02.011.
6
Improved cell adhesion under shear stress in PDMS microfluidic devices.
Colloids Surf B Biointerfaces. 2017 Feb 1;150:456-464. doi: 10.1016/j.colsurfb.2016.11.011. Epub 2016 Nov 9.
7
Self-contained microfluidic systems: a review.
Lab Chip. 2016 Aug 16;16(17):3177-92. doi: 10.1039/c6lc00712k.
8
Cell refractive index for cell biology and disease diagnosis: past, present and future.
Lab Chip. 2016 Feb 21;16(4):634-44. doi: 10.1039/c5lc01445j. Epub 2016 Jan 6.
9
Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.
PLoS One. 2015 Dec 14;10(12):e0145068. doi: 10.1371/journal.pone.0145068. eCollection 2015.
10
Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.
Electrophoresis. 2016 Feb;37(3):536-44. doi: 10.1002/elps.201500250. Epub 2015 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验