Zeniou A, Kefallinou D, Dimitrakellis P, Xenogiannopoulou E, Grigoriou M, Dimoulas A, Boumpas D T, Tserepi A, Gogolides E
Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Gregoriou Ε' and 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece.
Current address, Chemical Process and Energy Resources Institute (CPERI), Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi, 57001, Thessaloniki, Greece.
Chempluschem. 2024 Dec;89(12):e202400290. doi: 10.1002/cplu.202400290. Epub 2024 Sep 25.
Microfluidic devices serve as essential tools across diverse fields like medicine, biotechnology, and chemistry, enabling advancements in analytical techniques, point-of-care diagnostics, microfluidic cell cultures, and organ-on-chip models. While polymeric microfluidics are favoured for their cost-effectiveness and ease of fabrication, their inherent hydrophobic properties necessitate surface functionalization, often post-sealing. Here, we introduce a versatile apparatus for functionalizing sealed microfluidic devices using atmospheric plasma processing, with a focus on PDMS (polydimethylsiloxane) microfluidics. Through meticulous analysis of surface properties and capillary speed, before and after plasma treatment, along with a comparison between vacuum and atmospheric plasma functionalization methods, we demonstrate the efficacy of our approach. Subsequent experimentation within 3D PDMS microfluidic chambers, combining atmospheric pressure plasma treatment with collagen coating to facilitate mesenchymal stem cells (MSCs) growth over five days, reveals enhanced initial cell adhesion and proliferation, highlighting the potential of our method for improving cell-based applications within microfluidic systems.
微流控装置是医学、生物技术和化学等不同领域的重要工具,推动了分析技术、即时诊断、微流控细胞培养和芯片器官模型的发展。虽然聚合物微流控因其成本效益和易于制造而受到青睐,但其固有的疏水特性需要进行表面功能化处理,通常是在密封后进行。在此,我们介绍一种利用常压等离子体处理对密封微流控装置进行功能化的通用设备,重点是聚二甲基硅氧烷(PDMS)微流控。通过对等离子体处理前后表面性质和毛细管速度的细致分析,以及真空和常压等离子体功能化方法的比较,我们证明了我们方法的有效性。随后在3D PDMS微流控腔室内进行的实验,将常压等离子体处理与胶原蛋白涂层相结合,以促进间充质干细胞(MSCs)在五天内的生长,结果显示初始细胞粘附和增殖增强,突出了我们的方法在改善微流控系统中基于细胞的应用方面的潜力。