Suppr超能文献

基于QuickBird遥感影像的森林林窗面向对象分割与分类

[Object-oriented segmentation and classification of forest gap based on QuickBird remote sensing image.].

作者信息

Mao Xue Gang, Du Zi Han, Liu Jia Qian, Chen Shu Xin, Hou Ji Yu

机构信息

School of Forestry, Northeast Forestry University, Harbin 150040, China.

出版信息

Ying Yong Sheng Tai Xue Bao. 2018 Jan;29(1):44-52. doi: 10.13287/j.1001-9332.201801.011.

Abstract

Traditional field investigation and artificial interpretation could not satisfy the need of forest gaps extraction at regional scale. High spatial resolution remote sensing image provides the possibility for regional forest gaps extraction. In this study, we used object-oriented classification method to segment and classify forest gaps based on QuickBird high resolution optical remote sensing image in Jiangle National Forestry Farm of Fujian Province. In the process of object-oriented classification, 10 scales (10-100, with a step length of 10) were adopted to segment QuickBird remote sensing image; and the intersection area of reference object (RA) and intersection area of segmented object (RA) were adopted to evaluate the segmentation result at each scale. For segmentation result at each scale, 16 spectral characteristics and support vector machine classifier (SVM) were further used to classify forest gaps, non-forest gaps and others. The results showed that the optimal segmentation scale was 40 when RA was equal to RA. The accuracy difference between the maximum and minimum at different segmentation scales was 22%. At optimal scale, the overall classification accuracy was 88% (Kappa=0.82) based on SVM classifier. Combining high resolution remote sensing image data with object-oriented classification method could replace the traditional field investigation and artificial interpretation method to identify and classify forest gaps at regional scale.

摘要

传统的野外调查和人工判读无法满足区域尺度上森林林窗提取的需求。高空间分辨率遥感影像为区域森林林窗提取提供了可能。在本研究中,我们基于福建省将乐国有林场的QuickBird高分辨率光学遥感影像,采用面向对象分类方法对森林林窗进行分割和分类。在面向对象分类过程中,采用10个尺度(10 - 100,步长为10)对QuickBird遥感影像进行分割;并采用参考对象的交集面积(RA)和分割对象的交集面积(RA)来评估各尺度下的分割结果。对于各尺度的分割结果,进一步利用16个光谱特征和支持向量机分类器(SVM)对森林林窗、非森林林窗及其他地物进行分类。结果表明,当RA等于RA时,最优分割尺度为40。不同分割尺度下最大精度与最小精度之差为22%。在最优尺度下,基于支持向量机分类器的总体分类精度为88%(Kappa = 0.82)。将高分辨率遥感影像数据与面向对象分类方法相结合,可以取代传统的野外调查和人工判读方法,在区域尺度上对森林林窗进行识别和分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验