Suppr超能文献

微小隐孢子虫新型治疗候选物的鉴定:一种计算机模拟方法。

Identification of novel therapeutic candidates in Cryptosporidium parvum: an in silico approach.

作者信息

Panda Chinmaya, Mahapatra Rajani Kanta

机构信息

Department of Computer Science and Engineering,National Institute of Technology Patna,Patna-800005,India.

School of Biotechnology,KIIT University,Bhubaneswar-751024,Odisha,India.

出版信息

Parasitology. 2018 Dec;145(14):1907-1916. doi: 10.1017/S0031182018000677. Epub 2018 Apr 25.

Abstract

Unavailability of vaccines and effective drugs are primarily responsible for the growing menace of cryptosporidiosis. This study has incorporated a bioinformatics-based screening approach to explore potential vaccine candidates and novel drug targets in Cryptosporidium parvum proteome. A systematic strategy was defined for comparative genomics, orthology with related Cryptosporidium species, prioritization parameters and MHC class I and II binding promiscuity. The approach reported cytoplasmic protein cgd7_1830, a signal peptide protein, as a novel drug target. SWISS-MODEL online server was used to generate the 3D model of the protein and was validated by PROCHECK. The model has been subjected to in silico docking study with screened potent lead compounds from the ZINC database, PubChem and ChEMBL database using Flare software package of Cresset®. Furthermore, the approach reported protein cgd3_1400, as a vaccine candidate. The predicted B- and T-cell epitopes on the proposed vaccine candidate with highest scores were also subjected to docking study with MHC class I and II alleles using ClusPro web server. Results from this study could facilitate selection of proteins which could serve as drug targets and vaccine candidates to efficiently tackle the growing threat of cryptosporidiosis.

摘要

疫苗和有效药物的缺乏是隐孢子虫病威胁日益增加的主要原因。本研究采用了基于生物信息学的筛选方法,以探索微小隐孢子虫蛋白质组中的潜在疫苗候选物和新型药物靶点。为比较基因组学、与相关隐孢子虫物种的直系同源性、优先级参数以及MHC I类和II类结合多态性定义了一种系统策略。该方法报告细胞质蛋白cgd7_1830(一种信号肽蛋白)为新型药物靶点。使用SWISS-MODEL在线服务器生成该蛋白的3D模型,并通过PROCHECK进行验证。使用Cresset®的Flare软件包,对该模型与从ZINC数据库、PubChem和ChEMBL数据库筛选出的有效先导化合物进行了虚拟对接研究。此外,该方法报告蛋白cgd3_1400为疫苗候选物。还使用ClusPro网络服务器对预测得分最高的拟议疫苗候选物上的B细胞和T细胞表位与MHC I类和II类等位基因进行对接研究。本研究结果有助于选择可作为药物靶点和疫苗候选物的蛋白质,以有效应对隐孢子虫病日益增长的威胁。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验