Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada.
Nat Commun. 2018 Apr 24;9(1):1621. doi: 10.1038/s41467-018-03844-2.
Acid ceramidase (aCDase, ASAH1) hydrolyzes lysosomal membrane ceramide into sphingosine, the backbone of all sphingolipids, to regulate many cellular processes. Abnormal function of aCDase leads to Farber disease, spinal muscular atrophy with progressive myoclonic epilepsy, and is associated with Alzheimer's, diabetes, and cancer. Here, we present crystal structures of mammalian aCDases in both proenzyme and autocleaved forms. In the proenzyme, the catalytic center is buried and protected from solvent. Autocleavage triggers a conformational change exposing a hydrophobic channel leading to the active site. Substrate modeling suggests distinct catalytic mechanisms for substrate hydrolysis versus autocleavage. A hydrophobic surface surrounding the substrate binding channel appears to be a site of membrane attachment where the enzyme accepts substrates facilitated by the accessory protein, saposin-D. Structural mapping of disease mutations reveals that most would destabilize the protein fold. These results will inform the rational design of aCDase inhibitors and recombinant aCDase for disease therapeutics.
酸性鞘磷脂酶(aCDase,ASAH1)将溶酶体膜神经酰胺水解为神经鞘氨醇,这是所有神经鞘脂的骨架,从而调节许多细胞过程。aCDase 的异常功能导致法伯病、脊髓性肌萎缩伴进行性肌阵挛性癫痫,并与阿尔茨海默病、糖尿病和癌症有关。在这里,我们展示了哺乳动物 aCDase 在酶原和自身切割形式下的晶体结构。在酶原中,催化中心被埋藏并受到溶剂的保护。自身切割引发构象变化,暴露出通向活性位点的疏水性通道。底物建模表明,底物水解与自身切割的催化机制不同。围绕底物结合通道的疏水面似乎是酶接受由辅助蛋白 saposin-D 促进的底物的膜附着部位。疾病突变的结构映射表明,大多数突变会破坏蛋白质折叠。这些结果将为 aCDase 抑制剂和重组 aCDase 的合理设计提供信息,以用于疾病治疗。