Department of Electrical Engineering, National Engineering School of Sousse, University of Sousse, BP 264, Erriadh, 4023 Sousse, Tunisia.
Laboratory EμE, Faculty of Sciences of Monastir (FSM), University of Monastir, Av. Ibn El Jazzar Skanes, 5019 Monastir, Tunisia.
Comput Intell Neurosci. 2018 Mar 5;2018:3145436. doi: 10.1155/2018/3145436. eCollection 2018.
This work investigates the possibility of using a novel evolutionary based technique as a solution for the navigation problem of a mobile robot in a strange environment which is based on Teaching-Learning-Based Optimization. TLBO is employed to train the parameters of ANFIS structure for optimal trajectory and minimum travelling time to reach the goal. The obtained results using the suggested algorithm are validated by comparison with different results from other intelligent algorithms such as particle swarm optimization (PSO), invasive weed optimization (IWO), and biogeography-based optimization (BBO). At the end, the quality of the obtained results extracted from simulations affirms TLBO-based ANFIS as an efficient alternative method for solving the navigation problem of the mobile robot.
本工作研究了一种新的基于进化的技术在基于教学优化的陌生环境中移动机器人导航问题中的应用可能性。TLBO 用于训练 ANFIS 结构的参数,以获得最佳轨迹和到达目标的最小行驶时间。通过与其他智能算法(如粒子群优化(PSO)、入侵杂草优化(IWO)和基于生物地理学的优化(BBO))的不同结果进行比较,验证了所提出算法得到的结果。最后,从仿真中提取的结果质量证实了基于 TLBO 的 ANFIS 是解决移动机器人导航问题的一种有效替代方法。