Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
Dalton Trans. 2018 May 8;47(18):6494-6498. doi: 10.1039/c8dt01154k.
The in situ formation mechanisms of active Ni-carboryne species (COM1) and subsequent alkene/alkyne Ni-C bond insertion priorities, as well as relevant cycloaddition regioselectivities and kinetics, were investigated using the IDSCRF-B3LYP density functional theory (DFT) method, and all atoms were equitably treated at the DGDZVP level. The results reveal the o-carborane species to be energetically hedged into a four-step path (barrier heights 5.3, 19.7, 18.4 and 0.3 kcal mol-1, respectively) prior to being transferred into the active Ni-carboryne species (COM1) with the assistance of nBuLi and NiCl2(PPh3)2 at room temperature. In direct agreement with empirical trends, alkene insertion into Ni-C bonds on COM1 is exclusively favoured over the competing alkyne insertion. Electronic structure analyses of the corresponding transition structures showed that the preference of alkenes to alkynes is due to different bonding characteristics during this insertion process, namely, back donation for alkenes but donation for alkyne insertion, as evidenced by molecular graphics and NBO charge distributions. Subsequent alkyne additions (i.e. post alkene insertion) arise as the rate-determining step (RDS) for each of the five different reactions (a-e) explored. The solution free-energy barriers of these RDSs (30.5-38.5 kcal mol-1) were in quantitative agreement with their corresponding experimental yields, evidencing the reliability of the DFT results to reproduce chemical phenomena and energetic trends in real Ni-catalysed carboryne-alkene/alkyne cycloadditions.
使用 IDSCRF-B3LYP 密度泛函理论 (DFT) 方法,研究了活性 Ni-碳硼烷物种 (COM1) 的原位形成机制,以及随后的烯烃/炔烃 Ni-C 键插入优先级,以及相关的环加成区域选择性和动力学,所有原子均在 DGDZVP 水平上得到公平处理。结果表明,o-碳硼烷物种在室温下在 nBuLi 和 NiCl2(PPh3)2 的协助下被转移到活性 Ni-碳硼烷物种 (COM1) 之前,沿着四条分步路径(势垒高度分别为 5.3、19.7、18.4 和 0.3 kcal mol-1)进行能量转换。与经验趋势直接一致,烯烃插入 COM1 中的 Ni-C 键比竞争的炔烃插入更有利。相应过渡态的电子结构分析表明,烯烃对炔烃的偏好归因于插入过程中不同的键合特性,即烯烃的反馈供电子而炔烃的供电子,这可以通过分子图形和 NBO 电荷分布得到证明。随后的炔烃加成(即在烯烃插入后)成为五种不同反应 (a-e) 中每一种的速率决定步骤 (RDS)。这些 RDS 的溶液自由能垒 (30.5-38.5 kcal mol-1) 与它们相应的实验产率定量一致,证明了 DFT 结果能够重现实际 Ni 催化的碳硼烷-烯烃/炔烃环加成中的化学现象和能量趋势。