School of Materials Science and Engineering , Changchun University of Science and Technology , Changchun 130022 , P. R. China.
ACS Appl Mater Interfaces. 2018 May 9;10(18):15642-15651. doi: 10.1021/acsami.8b00605. Epub 2018 Apr 25.
To explore a universal electrode material for the high-performance electrochemical storage of Li, Na, and K ions remains a big challenge. Herein, we propose a "trinity" strategy to coat the SnO hollow nanospheres using the dual carbon layer from the polydopamine-derived nitrogen-doped carbon and graphene. Thereinto, hollow structures with sufficient void space could buffer the volume expansion, whereas dual carbon-confined strategy could not only elastically prevent the aggregation of nanoparticle and ensure the structural integrity but also immensely improve the conductivity and endow high rate properties. Benefiting from the effective strategy and specific structure, the dual carbon-confined SnO hollow nanosphere (denoted as G@C@SnO) can serve as the universal host material for alkali metal ions and enable their rapid and reversible storage. As expected, the resulting G@C@SnO as a universal anode material shows reversible alkali-metal-ion storage with high performance. We believe this that strategy could pave the way for constructing other metal-oxide-based dual carbon-confined high-performance materials for the future energy storage applications.
探索一种通用的电极材料,用于高性能电化学存储锂离子、钠离子和钾离子仍然是一个巨大的挑战。在此,我们提出了一种“三位一体”的策略,使用多巴胺衍生的氮掺杂碳和石墨烯的双层碳来包覆 SnO 空心纳米球。其中,具有足够空隙的空心结构可以缓冲体积膨胀,而双碳限制策略不仅可以弹性地防止纳米颗粒的聚集并确保结构的完整性,而且还可以极大地提高导电性并赋予高倍率性能。得益于有效的策略和特定的结构,双碳限制的 SnO 空心纳米球(表示为 G@C@SnO)可用作碱金属离子的通用主体材料,并实现其快速和可逆的存储。不出所料,所得的 G@C@SnO 作为通用的阳极材料表现出具有高性能的可逆碱金属离子存储。我们相信,该策略为构建其他基于金属氧化物的双碳限制高性能材料用于未来的储能应用铺平了道路。