Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
Nanoscale. 2018 Jun 21;10(24):11460-11466. doi: 10.1039/c8nr02290a.
The practical application of tin dioxide (SnO2) in lithium-ion batteries has been greatly hindered by its large volumetric expansion and low conductivity. Thus, a rational design of the size, geometry and the pore structure of SnO2-based nanomaterials is still a dire demand. To this end, herein we report an effective approach for engineering hollow-structured SnO2 nanospheres with adequate surface oxygen vacancies simultaneously wrapped by a nitrogen-doped graphene network (SnO2-x/N-rGO) through an electrostatic adsorption-induced self-assembly together with a thermal reduction process. The close electrostatic attraction achieved a tight and uniform combination of positively charged SnO2 nanospheres with negatively charged graphene oxide (GO), which can alleviate the aggregation and volume expansion of the entrapped SnO2 nanospheres. Subsequent thermal treatment not only ensures a significant reduction of the GO sheets accompanying nitrogen-doping, but also induces the generation of oxygen vacancies on the surface of the SnO2 hollow nanospheres, together building up a long-range and bicontinuous transfer channel for rapid electron and ion transport. Because of these structural merits, the as-built SnO2-x/N-rGO composite used as the anode material exhibits excellent robust cycling stability (∼912 mA h g-1 after 500 cycles at 0.5 A g-1 and 652 mA h g-1 after 200 cycles at 1 A g-1) and superior rate capability (309 mA h g-1 at 10 A g-1). This facile fabrication strategy may pave the way for the construction of high performance SnO2-based anode materials for potential application in advanced lithium-ion batteries.
二氧化锡(SnO2)在锂离子电池中的实际应用受到其大体积膨胀和低导电性的极大阻碍。因此,合理设计 SnO2 基纳米材料的尺寸、几何形状和孔结构仍然是迫切需要的。为此,本文通过静电吸附诱导自组装和热还原过程,报告了一种同时工程化具有足够表面氧空位的空心结构 SnO2 纳米球的有效方法,同时包裹氮掺杂石墨烯网络(SnO2-x/N-rGO)。实现的紧密静电吸引将带正电荷的 SnO2 纳米球与带负电荷的氧化石墨烯(GO)紧密均匀地结合在一起,可以缓解包裹的 SnO2 纳米球的聚集和体积膨胀。随后的热处理不仅确保了 GO 片的显著还原伴随氮掺杂,而且在 SnO2 空心纳米球的表面诱导氧空位的产生,共同构建了快速电子和离子传输的远程双连续传输通道。由于这些结构优点,所构建的 SnO2-x/N-rGO 复合材料用作阳极材料,表现出优异的稳健循环稳定性(在 0.5 A g-1 下 500 次循环后约为 912 mA h g-1,在 1 A g-1 下 200 次循环后为 652 mA h g-1)和卓越的倍率性能(在 10 A g-1 时为 309 mA h g-1)。这种简便的制造策略可能为构建高性能 SnO2 基阳极材料铺平道路,有望应用于先进的锂离子电池。