Suppr超能文献

AdS_{2} 引力中的细粒度混沌。

Fine Grained Chaos in AdS_{2} Gravity.

机构信息

Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada.

出版信息

Phys Rev Lett. 2018 Mar 23;120(12):121601. doi: 10.1103/PhysRevLett.120.121601.

Abstract

Quantum chaos can be characterized by an exponential growth of the thermal out-of-time-order four-point function up to a scrambling time u[over ^]{*}. We discuss generalizations of this statement for certain higher-point correlation functions. For concreteness, we study the Schwarzian theory of a one-dimensional time reparametrization mode, which describes two-dimensional anti-de Sitter space (AdS{2}) gravity and the low-energy dynamics of the Sachdev-Ye-Kitaev model. We identify a particular set of 2k-point functions, characterized as being both "maximally braided" and "k-out of time order," which exhibit exponential growth until progressively longer time scales u[over ^]{*}^{(k)}∼(k-1)u[over ^]{*}. We suggest an interpretation as scrambling of increasingly fine grained measures of quantum information, which correspondingly take progressively longer time to reach their thermal values.

摘要

量子混沌可以用热的非时序四点函数的指数增长来描述,直到混叠时间 u*。我们讨论了这种说法对某些更高阶相关函数的推广。为了具体起见,我们研究了一维时间重参数化模式的 Schwarzian 理论,它描述了二维反德西特空间(AdS_2)引力和 Sachdev-Ye-Kitaev 模型的低能动力学。我们确定了一组特定的 2k 点函数,其特征是“最大交织”和“k-非时序”,它们在直到更长的时间尺度 u*_(k)∼(k-1)u*的情况下表现出指数增长。我们提出了一种解释,即量子信息的越来越细粒度的度量的混叠,相应地需要越来越长的时间才能达到它们的热值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验