Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
Dipartimento di Fisica, Università di Torino, Via P. Giuria, 1-Torino 10125, Italy.
Phys Rev Lett. 2018 Apr 6;120(14):144301. doi: 10.1103/PhysRevLett.120.144301.
We consider the original β-Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.
我们研究了原始的β-Fermi-Pasta-Ulam-Tsingou 系统;数值模拟和理论论证表明,对于有限数量的质量,统计平衡状态独立于系统的初始能量而达到。通过对具有不同傅里叶随机相位的初始条件进行总体平均值,我们通过数值方法估计了等分的时间尺度,并且发现对于非常小的非线性,它与基于精确波-波共振相互作用理论的预测相符。我们推导出一个用于非线性频率展宽的简单公式,并表明当频率重叠现象发生时,热化时间尺度会呈现出不同的标度。我们的结果支持这样一种观点,即 Chirikov 重叠判据标识了两个不同弛豫时间标度之间的过渡区域。