Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Phys Rev Lett. 2018 Apr 6;120(14):141602. doi: 10.1103/PhysRevLett.120.141602.
We use Picard-Lefschetz theory to prove a new formula for intersection numbers of twisted cocycles associated with a given arrangement of hyperplanes. In a special case when this arrangement produces the moduli space of punctured Riemann spheres, intersection numbers become tree-level scattering amplitudes of quantum field theories in the Cachazo-He-Yuan formulation.
我们利用 Picard-Lefschetz 理论证明了与给定超平面排列相关的扭上同调的交点数的一个新公式。在这种排列产生 punctured Riemann sphere 的模空间的特殊情况下,交点数成为 Cachazo-He-Yuan 表述的量子场论的树能级散射振幅。