Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Bangalore, India.
Manipal Academy of Higher Education, Karnataka, India.
FEBS J. 2018 Jun;285(12):2306-2318. doi: 10.1111/febs.14481. Epub 2018 May 25.
Francisella tularensisis, the causative agent of tularemia has been classified as a category A bioterrorism agent. Here, we present the crystal structure of apo and adenine bound form of the adenine phosphoribosyltransferase (APRT) from Francisella tularensis. APRT is an enzyme involved in the salvage of adenine (a 6-aminopurine), converting it to AMP. The purine salvage pathway relies on two essential and distinct enzymes to convert 6-aminopurine and 6-oxopurines into corresponding nucleotides. The mechanism by which these enzymes differentiate different purines is not clearly understood. Analysis of the structures of apo and adenine-bound APRT from F. tularensis, together with all other available structures of APRTs, suggests that (a) the base-binding loop is stabilized by a cluster of aromatic and conformation-restricting proline residues, and (b) an N-H···N hydrogen bond between the base-binding loop and the N1 atom of adenine is the key interaction that differentiates adenine from 6-oxopurines. These observations were corroborated by bioinformatics analysis of ~ 4000 sequences of APRTs (with 80% identity cutoff), which confirmed that the residues conferring rigidity to the base-binding loop are highly conserved. Furthermore, an F23A mutation on the base-binding loop severely affects the efficiency of the enzyme. We extended our analysis to the structure and sequences of APRTs from the Trypanosomatidae family with a destabilizing insertion on the base-binding loop and propose the mechanism by which these evolutionarily divergent enzymes achieve base specificity. Our results suggest that the base-binding loop not only confers appropriate affinity but also provides defined specificity for adenine.
EC 2.4.2.7 DATABASE: Structural data are available in Protein Data Bank (PDB) under the accession numbers 5YW2 and 5YW5.
弗朗西斯氏菌 tularensis 是土拉热弗朗西斯菌的病原体,被归类为 A 类生物恐怖主义制剂。在这里,我们展示了来自弗朗西斯氏菌 tularensis 的腺嘌呤磷酸核糖基转移酶 (APRT) 的apo 和腺嘌呤结合形式的晶体结构。APRT 是一种参与腺嘌呤(6-氨基嘌呤)回收的酶,将其转化为 AMP。嘌呤回收途径依赖于两种必需且不同的酶将 6-氨基嘌呤和 6-氧嘌呤转化为相应的核苷酸。这些酶如何区分不同嘌呤的机制尚不清楚。对来自 F. tularensis 的 apo 和腺嘌呤结合 APRT 的结构分析,以及所有其他可用的 APRT 结构,表明 (a) 碱基结合环由一组芳香族和构象限制脯氨酸残基稳定,并且 (b) 碱基结合环和腺嘌呤的 N1 原子之间的 N-H···N 氢键是区分腺嘌呤和 6-氧嘌呤的关键相互作用。这些观察结果通过对 ~ 4000 个 APRT 序列(80%同一性截止)的生物信息学分析得到证实,该分析证实了赋予碱基结合环刚性的残基高度保守。此外,碱基结合环上的 F23A 突变严重影响酶的效率。我们将分析扩展到碱基结合环上具有不稳定插入的锥虫科家族的 APRT 的结构和序列,并提出了这些进化上不同的酶实现碱基特异性的机制。我们的结果表明,碱基结合环不仅赋予适当的亲和力,而且还为腺嘌呤提供了明确的特异性。
EC 2.4.2.7 数据库:结构数据可在蛋白质数据银行 (PDB) 中获得,登录号为 5YW2 和 5YW5。