Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland.
Phys Chem Chem Phys. 2018 May 9;20(18):12736-12745. doi: 10.1039/c8cp01309h.
The production of high purity hydrogen with the simultaneous capture of CO2, can be achieved through a chemical looping (CL) cycle relying on an iron oxide-based oxygen carrier. Indeed, the availability of active and cyclically stable oxygen carriers is a key criterion for the practical implementation of this technology. In this regard, improving our understanding of the reduction pathway(s) of iron-based oxygen carriers and the development of concepts to increase the reduction kinetics are important aspects. The aim of this work is to evaluate the effect of the addition of copper on the redox behaviour of iron oxide based oxygen carriers stabilized on ZrO2. In situ pulsed-H2 XANES (Fe K-edge) experiments allowed for the determination of the reduction pathways in these materials, viz. the reduction of both Fe2O3 and CuFe2O4 proceeded via a Fe2+ intermediate: Fe2O3 (CuFe2O4) → Fe3O4 (Cu0) → FeO (Cu0) → Fe0 (Cu0). In the first step CuFe2O4 is reduced to Cu0 and Fe3O4, whereby Cu0 promotes the further reduction of iron oxide, increasing their rate of formation. In particular, the rate of reduction of FeO → Fe0 is accelerated most dramatically by Cu0. This is an encouraging result as the FeO → Fe0 transition is the slowest reduction reaction.
通过依赖氧化铁基氧载体的化学循环 (CL) 循环,可以生产高纯度氢气并同时捕获 CO2。事实上,活性和循环稳定的氧载体的可用性是该技术实际实施的关键标准。在这方面,提高我们对铁基氧载体还原途径的理解并开发提高还原动力学的概念是很重要的方面。这项工作的目的是评估在 ZrO2 上稳定的氧化铁基氧载体中添加铜对其氧化还原行为的影响。原位脉冲 H2 XANES(Fe K 边)实验可确定这些材料中的还原途径,即 Fe2O3 和 CuFe2O4 的还原均通过 Fe2+中间体进行:Fe2O3(CuFe2O4)→Fe3O4(Cu0)→FeO(Cu0)→Fe0(Cu0)。在第一步中,CuFe2O4 被还原为 Cu0 和 Fe3O4,其中 Cu0 促进了氧化铁的进一步还原,增加了它们的形成速率。特别是,FeO→Fe0 的还原速率被 Cu0 加速得最显著。这是一个令人鼓舞的结果,因为 FeO→Fe0 转变是最慢的还原反应。