Suppr超能文献

血管异常:从临床组织学到遗传框架。

Vascular Anomalies: From a Clinicohistologic to a Genetic Framework.

机构信息

Boston, Mass.

From the Department of Plastic and Oral Surgery, Children's Hospital Boston, Harvard Medical School.

出版信息

Plast Reconstr Surg. 2018 May;141(5):709e-717e. doi: 10.1097/PRS.0000000000004294.

Abstract

BACKGROUND

Vascular anomalies currently are classified according to their clinical and histological characteristics. Recent advances in molecular genetics have enabled the identification of somatic mutations in most types of vascular anomalies. The purpose of this study was to collate information regarding the genetic basis of vascular anomalies.

METHODS

The PubMed literature was reviewed for all citations that identified a mutation in a vascular anomaly between 1994 and 2017. Search terms included "vascular anomaly," "mutation," "gene," "hemangioma," "pyogenic granuloma," "kaposiform hemangioendothelioma," "capillary malformation," "venous malformation," lymphatic malformation," "arteriovenous malformation," and "syndrome." Articles that identified both germline and somatic mutations in vascular anomalies were analyzed. Mutations were categorized by type (germline or somatic), gene, signaling pathway, and cell(s) enriched for the mutation.

RESULTS

The majority of vascular anomalies had associated mutations that commonly affected tyrosine kinase receptor signaling through the RAS or PIK3CA pathways. Mutations in PIK3CA and G-protein-coupled receptors were most frequently identified. Specific types of vascular anomalies usually were associated with a single gene. However, mutations in the same gene occasionally were found in different vascular lesions, and some anomalies had a mutation in more than one gene. Mutations were most commonly enriched in endothelial cells.

CONCLUSIONS

Identification of somatic mutations in vascular anomalies is changing the paradigm by which lesions are diagnosed and understood. Mutations and their pathways are providing potential targets for the development of novel pharmacotherapy. In the future, vascular anomalies will be managed based on clinical characteristics and molecular pathophysiology.

摘要

背景

目前,血管异常根据其临床和组织学特征进行分类。分子遗传学的最新进展使大多数类型的血管异常的体细胞突变得以识别。本研究的目的是整理有关血管异常遗传基础的信息。

方法

对 1994 年至 2017 年间在 PubMed 文献中确定血管异常突变的所有引用进行了文献回顾。搜索词包括“血管异常”、“突变”、“基因”、“血管瘤”、“化脓性肉芽肿”、“卡波西样血管内皮细胞瘤”、“毛细血管畸形”、“静脉畸形”、“淋巴管畸形”、“动静脉畸形”和“综合征”。分析了确定血管异常中种系和体细胞突变的文章。突变按类型(种系或体细胞)、基因、信号通路和突变富集的细胞进行分类。

结果

大多数血管异常都有相关的突变,这些突变通常通过 RAS 或 PIK3CA 途径影响酪氨酸激酶受体信号。PIK3CA 和 G 蛋白偶联受体的突变最常被发现。特定类型的血管异常通常与单个基因相关。然而,在不同的血管病变中偶尔会发现相同基因的突变,一些异常有一个以上基因的突变。突变最常富集在血管内皮细胞中。

结论

血管异常体细胞突变的鉴定正在改变通过病变诊断和理解的模式。突变及其途径为开发新的药物治疗提供了潜在的靶点。在未来,血管异常将根据临床特征和分子病理生理学进行管理。

相似文献

1
Vascular Anomalies: From a Clinicohistologic to a Genetic Framework.
Plast Reconstr Surg. 2018 May;141(5):709e-717e. doi: 10.1097/PRS.0000000000004294.
2
Somatic mutations in exon 17 of the TEK gene in vascular tumors and vascular malformations.
J Vasc Surg. 2011 Dec;54(6):1760-8. doi: 10.1016/j.jvs.2011.06.098. Epub 2011 Oct 1.
3
Etiology and Genetics of Congenital Vascular Lesions.
Otolaryngol Clin North Am. 2018 Feb;51(1):41-53. doi: 10.1016/j.otc.2017.09.006.
4
Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA.
J Pediatr. 2015 Apr;166(4):1048-54.e1-5. doi: 10.1016/j.jpeds.2014.12.069. Epub 2015 Feb 11.
5
Vascular anomalies of the head and neck: a review of genetics.
Semin Ophthalmol. 2013 Sep-Nov;28(5-6):257-66. doi: 10.3109/08820538.2013.825279. Epub 2013 Sep 6.
6
The genetics of vascular anomalies.
Curr Opin Otolaryngol Head Neck Surg. 2012 Dec;20(6):527-32. doi: 10.1097/MOO.0b013e3283587415.
7
MET somatic activating mutations are responsible for lymphovenous malformation and can be identified using cell-free DNA next generation sequencing liquid biopsy.
J Vasc Surg Venous Lymphat Disord. 2021 May;9(3):740-744. doi: 10.1016/j.jvsv.2020.07.015. Epub 2020 Aug 26.
8
Non-hotspot PIK3CA mutations are more frequent in CLOVES than in common or combined lymphatic malformations.
Orphanet J Rare Dis. 2021 Jun 10;16(1):267. doi: 10.1186/s13023-021-01898-y.
9
RASA1 somatic mutation and variable expressivity in capillary malformation/arteriovenous malformation (CM/AVM) syndrome.
Am J Med Genet A. 2016 Jun;170(6):1450-4. doi: 10.1002/ajmg.a.37613. Epub 2016 Mar 11.
10
Genetics of vascular anomalies.
Semin Pediatr Surg. 2020 Oct;29(5):150967. doi: 10.1016/j.sempedsurg.2020.150967. Epub 2020 Sep 16.

引用本文的文献

2
Successful Treatment of Low-Flow Vascular Malformation in the Lip Using Intralesional Bleomycin: A Case Report.
Cureus. 2024 Nov 20;16(11):e74119. doi: 10.7759/cureus.74119. eCollection 2024 Nov.
3
Clinical characteristics and managements of congenital hepatic hemangioma: a cohort study of 211 cases.
Hepatol Int. 2025 Jun;19(3):682-691. doi: 10.1007/s12072-024-10756-5. Epub 2024 Nov 29.
4
Venous Malformations: Diagnosis, Management, and Future Directions.
Semin Intervent Radiol. 2024 Nov 7;41(4):376-388. doi: 10.1055/s-0044-1791280. eCollection 2024 Aug.
5
Pseudoangiosarcoma and cutaneous collagenous vasculopathy in a patient on a Bruton's tyrosine kinase inhibitor.
JAAD Case Rep. 2024 Jul 1;51:17-21. doi: 10.1016/j.jdcr.2024.06.011. eCollection 2024 Sep.
6
Coexistence of kaposiform hemangioendothelioma and capillary malformation: More than a coincidence? Two case reports.
Heliyon. 2024 Mar 29;10(7):e28802. doi: 10.1016/j.heliyon.2024.e28802. eCollection 2024 Apr 15.
7
Association Between the rs1834306 A>G Polymorphism and Susceptibility to Venous Malformation.
Int J Gen Med. 2024 Feb 9;17:509-515. doi: 10.2147/IJGM.S441542. eCollection 2024.
9
Pathophysiology of Slow-Flow Vascular Malformations: Current Understanding and Unanswered Questions.
J Vasc Anom (Phila). 2023 Jul 10;4(3):e069. doi: 10.1097/JOVA.0000000000000069. eCollection 2023 Sep.
10
Barriers to Genetic Testing in Vascular Malformations.
JAMA Netw Open. 2023 May 1;6(5):e2314829. doi: 10.1001/jamanetworkopen.2023.14829.

本文引用的文献

1
Somatic PIK3CA mutations are present in multiple tissues of facial infiltrating lipomatosis.
Pediatr Res. 2017 Nov;82(5):850-854. doi: 10.1038/pr.2017.155. Epub 2017 Aug 2.
3
PDGFRB gain-of-function mutations in sporadic infantile myofibromatosis.
Hum Mol Genet. 2017 May 15;26(10):1801-1810. doi: 10.1093/hmg/ddx081.
4
Somatic MAP2K1 Mutations Are Associated with Extracranial Arteriovenous Malformation.
Am J Hum Genet. 2017 Mar 2;100(3):546-554. doi: 10.1016/j.ajhg.2017.01.018. Epub 2017 Feb 9.
5
A somatic GNA11 mutation is associated with extremity capillary malformation and overgrowth.
Angiogenesis. 2017 Aug;20(3):303-306. doi: 10.1007/s10456-016-9538-1. Epub 2017 Jan 24.
6
Blue Rubber Bleb Nevus (BRBN) Syndrome Is Caused by Somatic TEK (TIE2) Mutations.
J Invest Dermatol. 2017 Jan;137(1):207-216. doi: 10.1016/j.jid.2016.07.034. Epub 2016 Aug 9.
7
GNA14 Somatic Mutation Causes Congenital and Sporadic Vascular Tumors by MAPK Activation.
Am J Hum Genet. 2016 Aug 4;99(2):443-50. doi: 10.1016/j.ajhg.2016.06.010. Epub 2016 Jul 28.
8
Somatic Activating Mutations in GNAQ and GNA11 Are Associated with Congenital Hemangioma.
Am J Hum Genet. 2016 Apr 7;98(4):789-95. doi: 10.1016/j.ajhg.2016.03.009.
9
BRAF and RAS Mutations in Sporadic and Secondary Pyogenic Granuloma.
J Invest Dermatol. 2016 Feb;136(2):481-6. doi: 10.1038/JID.2015.376.
10
Somatic Activating PIK3CA Mutations Cause Venous Malformation.
Am J Hum Genet. 2015 Dec 3;97(6):914-21. doi: 10.1016/j.ajhg.2015.11.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验