Ito Syoji, Mitsuishi Morio, Setoura Kenji, Tamura Mamoru, Iida Takuya, Morimoto Masakazu, Irie Masahiro, Miyasaka Hiroshi
Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science , Osaka University , Toyonaka, Osaka 560-8531 , Japan.
Research Institute for Light-induced Acceleration System (RILACS) , Osaka Prefecture University , Sakai 599-8570 , Japan.
J Phys Chem Lett. 2018 May 17;9(10):2659-2664. doi: 10.1021/acs.jpclett.8b00890. Epub 2018 May 7.
Not only the energy but also the momentum of photons transfers to material via photoabsorption; this momentum transfer, known as radiation pressure, can induce motions of small particles. It can therefore be expected to induce mechanical motions of mesoscopic materials synchronized with the reversible change of their absorption coefficient by external stimuli. We demonstrated quantitative photomechanical motions in mesoscopic regions by combining optical tweezer and photochromic reactions of diarylethene (DAE). A microparticle including DAE was optically trapped with 532 nm laser and the absorption band of the DAE was photoswitched with UV laser, resulting in the modulation of the radiation force through the change in the complex dielectric constant of the particle. In this process, mesoscopic mechanical motions were successfully induced by the photochromic reaction. The present approach is potentially applicable in a wide variety of nano/micromechanical devices and also paves the way for monitoring the absorption of photons by molecules via photomechanical response.