Suppr超能文献

渐进式硬挖掘网络的单目深度估计。

Progressive Hard-Mining Network for Monocular Depth Estimation.

出版信息

IEEE Trans Image Process. 2018 Aug;27(8):3691-3702. doi: 10.1109/TIP.2018.2821979.

Abstract

Depth estimation from the monocular RGB image is a challenging task for computer vision due to no reliable cues as the prior knowledge. Most existing monocular depth estimation works including various geometric or network learning methods lack of an effective mechanism to preserve the cross-border details of depth maps, which yet is very important for the performance promotion. In this paper, we propose a novel end-to-end progressive hard-mining network (PHN) framework to address this problem. Specifically, we construct the hard-mining objective function, the intra-scale and inter-scale refinement subnetworks to accurately localize and refine those hard-mining regions. The intra-scale refining block recursively recovers details of depth maps from different semantic features in the same receptive field while the inter-scale block favors a complementary interaction among multi-scale depth cues of different receptive fields. For further reducing the uncertainty of the network, we design a difficulty-ware refinement loss function to guide the depth learning process, which can adaptively focus on mining these hard-regions where accumulated errors easily occur. All three modules collaborate together to progressively reduce the error propagation in the depth learning process, and then, boost the performance of monocular depth estimation to some extent. We conduct comprehensive evaluations on several public benchmark data sets (including NYU Depth V2, KITTI, and Make3D). The experiment results well demonstrate the superiority of our proposed PHN framework over other state of the arts for monocular depth estimation task.

摘要

从单目 RGB 图像进行深度估计是计算机视觉中的一项具有挑战性的任务,因为缺乏可靠的先验知识。大多数现有的单目深度估计工作,包括各种几何或网络学习方法,都缺乏有效机制来保留深度图的跨边界细节,而这对于提高性能却非常重要。在本文中,我们提出了一种新颖的端到端渐进式硬挖掘网络(PHN)框架来解决这个问题。具体来说,我们构建了硬挖掘目标函数、内尺度和外尺度细化子网络,以准确地定位和细化那些硬挖掘区域。内尺度细化块从同一感受野中的不同语义特征递归地恢复深度图的细节,而外尺度细化块则有利于不同感受野的多尺度深度线索之间的互补交互。为了进一步降低网络的不确定性,我们设计了一种困难感知细化损失函数来引导深度学习过程,该函数可以自适应地专注于挖掘那些容易累积误差的硬区域。所有三个模块协同工作,逐步减少深度学习过程中的误差传播,从而在一定程度上提高单目深度估计的性能。我们在几个公共基准数据集(包括 NYU Depth V2、KITTI 和 Make3D)上进行了全面评估。实验结果很好地证明了我们提出的 PHN 框架在单目深度估计任务上优于其他最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验