Suppr超能文献

一步估计网络人口规模:具有匿名性的 respondent-driven 捕获-再捕获。

One-step estimation of networked population size: Respondent-driven capture-recapture with anonymity.

机构信息

Department of Sociology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America.

Fellow Statistics, San Diego, California, United States of America.

出版信息

PLoS One. 2018 Apr 26;13(4):e0195959. doi: 10.1371/journal.pone.0195959. eCollection 2018.

Abstract

Size estimation is particularly important for populations whose members experience disproportionate health issues or pose elevated health risks to the ambient social structures in which they are embedded. Efforts to derive size estimates are often frustrated when the population is hidden or hard-to-reach in ways that preclude conventional survey strategies, as is the case when social stigma is associated with group membership or when group members are involved in illegal activities. This paper extends prior research on the problem of network population size estimation, building on established survey/sampling methodologies commonly used with hard-to-reach groups. Three novel one-step, network-based population size estimators are presented, for use in the context of uniform random sampling, respondent-driven sampling, and when networks exhibit significant clustering effects. We give provably sufficient conditions for the consistency of these estimators in large configuration networks. Simulation experiments across a wide range of synthetic network topologies validate the performance of the estimators, which also perform well on a real-world location-based social networking data set with significant clustering. Finally, the proposed schemes are extended to allow them to be used in settings where participant anonymity is required. Systematic experiments show favorable tradeoffs between anonymity guarantees and estimator performance. Taken together, we demonstrate that reasonable population size estimates are derived from anonymous respondent driven samples of 250-750 individuals, within ambient populations of 5,000-40,000. The method thus represents a novel and cost-effective means for health planners and those agencies concerned with health and disease surveillance to estimate the size of hidden populations. We discuss limitations and future work in the concluding section.

摘要

规模估计对于那些成员面临不成比例的健康问题或对其所处的环境社会结构构成高健康风险的人群尤为重要。当人群以排除传统调查策略的方式隐藏或难以接触时,例如当与群体成员身份相关的社会耻辱感或当群体成员从事非法活动时,往往会阻碍规模估计的努力。本文扩展了先前关于网络人群规模估计问题的研究,借鉴了常用于难以接触的群体的既定调查/抽样方法。提出了三个新颖的一步网络人口规模估计器,用于均匀随机抽样、受访者驱动抽样以及网络表现出显著聚类效应的情况。我们给出了这些估计器在大型配置网络中一致性的可证明充分条件。在广泛的合成网络拓扑结构的仿真实验中验证了这些估计器的性能,这些估计器在具有显著聚类的真实基于位置的社交网络数据集上也表现良好。最后,扩展了所提出的方案,使其能够在需要参与者匿名的情况下使用。系统实验表明,在匿名受访者驱动样本数量为 250-750 人、环境人群数量为 5000-40000 人的情况下,能够实现匿名保证和估计器性能之间的有利权衡。总之,我们证明了从匿名受访者驱动的样本中可以得出合理的人群规模估计,这些样本来自于 5000-40000 人的环境人群。该方法代表了一种新颖且具有成本效益的方法,可供健康规划者和关注健康和疾病监测的机构用于估计隐藏人群的规模。我们在结论部分讨论了限制和未来的工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验