Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
PLoS One. 2018 Apr 26;13(4):e0196038. doi: 10.1371/journal.pone.0196038. eCollection 2018.
Maize (Zea mays L.) is a staple food whose production relies on seed stocks that largely comprise hybrid varieties. Therefore, knowledge about the molecular determinants of hybrid performance (HP) in the field can be used to devise better performing hybrids to address the demands for sustainable increase in yield. Here, we propose and test a classification-driven framework that uses metabolic profiles from in vitro grown young roots of parental lines from the Dent × Flint maize heterotic pattern to predict field HP. We identify parental analytes that best predict the metabolic inheritance patterns in 328 hybrids. We then demonstrate that these analytes are also predictive of field HP (0.64 ≥ r ≥ 0.79) and discriminate hybrids of good performance (accuracy of 87.50%). Therefore, our approach provides a cost-effective solution for hybrid selection programs.
玉米(Zea mays L.)是一种主食,其生产依赖于主要由杂交品种组成的种子库存。因此,了解田间杂交性能(HP)的分子决定因素,可以用来设计表现更好的杂交品种,以满足可持续提高产量的需求。在这里,我们提出并测试了一种分类驱动的框架,该框架使用来自 Dent×Flint 玉米杂种优势模式的亲本系在体外生长的幼根的代谢谱来预测田间 HP。我们确定了最佳预测 328 个杂种代谢遗传模式的亲本分析物。然后,我们证明这些分析物也可以预测田间 HP(0.64≥r≥0.79),并区分表现良好的杂种(准确率为 87.50%)。因此,我们的方法为杂交种选择计划提供了一种具有成本效益的解决方案。