Suppr超能文献

大数据与人工智能辅助作物育种:进展与展望

Big data and artificial intelligence-aided crop breeding: Progress and prospects.

作者信息

Zhu Wanchao, Li Weifu, Zhang Hongwei, Li Lin

机构信息

Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, China.

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.

出版信息

J Integr Plant Biol. 2025 Mar;67(3):722-739. doi: 10.1111/jipb.13791. Epub 2024 Oct 28.

Abstract

The past decade has witnessed rapid developments in gene discovery, biological big data (BBD), artificial intelligence (AI)-aided technologies, and molecular breeding. These advancements are expected to accelerate crop breeding under the pressure of increasing demands for food. Here, we first summarize current breeding methods and discuss the need for new ways to support breeding efforts. Then, we review how to combine BBD and AI technologies for genetic dissection, exploring functional genes, predicting regulatory elements and functional domains, and phenotypic prediction. Finally, we propose the concept of intelligent precision design breeding (IPDB) driven by AI technology and offer ideas about how to implement IPDB. We hope that IPDB will enhance the predictability, efficiency, and cost of crop breeding compared with current technologies. As an example of IPDB, we explore the possibilities offered by CropGPT, which combines biological techniques, bioinformatics, and breeding art from breeders, and presents an open, shareable, and cooperative breeding system. IPDB provides integrated services and communication platforms for biologists, bioinformatics experts, germplasm resource specialists, breeders, dealers, and farmers, and should be well suited for future breeding.

摘要

在过去十年里,基因发现、生物大数据(BBD)、人工智能(AI)辅助技术和分子育种领域都取得了飞速发展。在对粮食需求不断增加的压力下,这些进展有望加速作物育种进程。在此,我们首先总结当前的育种方法,并讨论采用新方法支持育种工作的必要性。然后,我们回顾如何将生物大数据和人工智能技术结合起来用于基因剖析、探索功能基因、预测调控元件和功能域以及进行表型预测。最后,我们提出由人工智能技术驱动的智能精准设计育种(IPDB)概念,并就如何实施智能精准设计育种提供思路。我们希望与现有技术相比,智能精准设计育种能够提高作物育种的可预测性、效率并降低成本。作为智能精准设计育种的一个实例,我们探讨了CropGPT所带来的可能性,它结合了生物技术、生物信息学以及育种家的育种技艺,并呈现出一个开放、可共享且合作的育种体系。智能精准设计育种为生物学家、生物信息学专家、种质资源专家、育种家、经销商和农民提供集成服务和交流平台,应非常适合未来的育种工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b65e/11951406/78501b9d385a/JIPB-67-722-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验