Department of Botany, University of Delhi, Delhi 110007, India.
Department of Botany, University of Delhi, Delhi 110007, India.
Mol Phylogenet Evol. 2018 Sep;126:331-345. doi: 10.1016/j.ympev.2018.04.018. Epub 2018 Apr 24.
Novel morphological structures allowed adaptation to dry conditions in early land plants. The cuticle, one such novelty, plays diverse roles in tolerance to abiotic and biotic stresses and plant development. Cuticular waxes represent a major constituent of the cuticle and are comprised of an assortment of chemicals that include, among others, very long chain fatty acids (VLCFAs). Members of the β-ketoacyl coenzyme A synthases (KCS) gene family code for enzymes that are essential for fatty acid biosynthesis. The gene KCS6 (CUT1) is known to be a key player in the production of VLCFA precursors essential for the synthesis of cuticular waxes in the model plant Arabidopsis thaliana (Brassicaceae). Despite its functional importance, relatively little is known about the evolutionary history of KCS6 or its paralog KCS5 in Brassicaceae or beyond. This lacuna becomes important when we extrapolate understanding of mechanisms gained from the model plant to its containing clades Brassicaceae, flowering plants, or beyond. The Brassicaceae, with several sequenced genomes and a known history of paleoploidy, mesopolyploidy and neopolyploidy, offer a system in which to study the evolution and diversification of the KCS6-KCS5 paralogy. Our phylogenetic analyses across green plants, combined with comparative genomic, microsynteny and evolutionary rates analyses across nine genomes of Brassicaceae, reveal that (1) the KCS6-KCS5 paralogy arose as the result of a large segmental duplication in the ancestral Brassicaceae, (2) the KCS6-KCS5 lineage is represented by a single copy in other flowering plant lineages, (3) the duplicated segments undergo different degrees of retention and loss, and (4) most of the genes in the KCS6 and KCS5 gene blocks (including KCS6 and KCS5 themselves) are under purifying selection. The last also true for most members of the KCS gene family in Brassicaceae, except for KCS8, KCS9 and KCS17, which are under positive selection and may be undergoing functional evolution, meriting further investigation. Overall, our results clearly establish that the ancestral KCS6/5 gene duplicated in the Brassicaceae lineage. It is possible that any specialized functions of KCS5 found in Brassicaceae are either part of a set of KCS6/5 gene functions in the rest of the flowering plants, or unique to Brassicaceae.
新的形态结构使早期陆生植物能够适应干旱条件。角质层就是这样一种新颖的结构,它在耐受非生物和生物胁迫以及植物发育方面发挥着多种作用。角质层蜡质是角质层的主要成分之一,由各种化学物质组成,包括长链脂肪酸 (VLCFAs)。β-酮酰基辅酶 A 合酶 (KCS) 基因家族的成员编码对于脂肪酸生物合成至关重要的酶。已知基因 KCS6 (CUT1) 是拟南芥 (十字花科) 中角质层蜡质合成所必需的 VLCFA 前体产生的关键因子。尽管其功能重要,但关于 KCS6 或其在十字花科或其他科中的同源基因 KCS5 的进化历史,我们知之甚少。当我们将从模式植物中获得的机制理解推断到其包含的分支科,如十字花科、开花植物或其他科时,这种空白就变得很重要。十字花科有几个已测序的基因组,并有已知的古多倍体、中多倍体和新多倍体历史,为研究 KCS6-KCS5 同源基因的进化和多样化提供了一个系统。我们在绿色植物中的系统发育分析,结合九个十字花科基因组的比较基因组、微同线性和进化率分析,揭示了:(1) KCS6-KCS5 同源基因是在十字花科的祖先中通过大片段重复产生的;(2) KCS6-KCS5 谱系在其他开花植物谱系中仅由一个拷贝代表;(3) 重复片段经历了不同程度的保留和丢失;(4) KCS6 和 KCS5 基因块中的大多数基因(包括 KCS6 和 KCS5 本身)都受到纯化选择的约束。这对于十字花科中的大多数 KCS 基因家族成员也是如此,除了 KCS8、KCS9 和 KCS17,它们受到正选择,可能正在经历功能进化,值得进一步研究。总的来说,我们的结果清楚地表明,KCS6/5 基因在十字花科谱系中发生了祖先复制。在十字花科中发现的 KCS5 的任何特殊功能可能是其余开花植物中 KCS6/5 基因功能的一部分,或者是十字花科所特有的。