Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland.
Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic.
Physiol Plant. 2019 Mar;165(3):537-554. doi: 10.1111/ppl.12749. Epub 2018 Aug 2.
We studied how plants acclimated to growing conditions that included combinations of blue light (BL) and ultraviolet (UV)-A radiation, and whether their growing environment affected their photosynthetic capacity during and after a brief period of acute high light (as might happen during an under-canopy sunfleck). Arabidopsis thaliana Landsberg erecta wild-type were compared with mutants lacking functional blue light and UV photoreceptors: phototropin 1, cryptochromes (CRY1 and CRY2) and UV RESISTANT LOCUS 8 (uvr8). This was achieved using light-emitting-diode (LED) lamps in a controlled environment to create treatments with or without BL, in a split-plot design with or without UV-A radiation. We compared the accumulation of phenolic compounds under growth conditions and after exposure to 30 min of high light at the end of the experiment (46 days), and likewise measured the operational efficiency of photosystem II (ϕPSII, a proxy for photosynthetic performance) and dark-adapted maximum quantum yield (F /F to assess PSII damage). Our results indicate that cryptochromes are the main photoreceptors regulating phenolic compound accumulation in response to BL and UV-A radiation, and a lack of functional cryptochromes impairs photosynthetic performance under high light. Our findings also reveal a role for UVR8 in accumulating flavonoids in response to a low UV-A dose. Interestingly, phototropin 1 partially mediated constitutive accumulation of phenolic compounds in the absence of BL. Low-irradiance BL and UV-A did not improve ϕPSII and F /F upon our acute high-light treatment; however, CRYs played an important role in ameliorating high-light stress.
我们研究了植物如何适应包括蓝光 (BL) 和紫外线 (UV)-A 辐射组合的生长条件,以及它们的生长环境是否会影响它们在短暂的高光急性胁迫后(例如在树冠下光斑期间)的光合作用能力。我们将拟南芥 LANDBERG ERNESTA 野生型与缺乏功能蓝光和 UV 光受体的突变体进行了比较:光受体 1、隐花色素 (CRY1 和 CRY2) 和紫外线抗性 LOCUS 8 (uvr8)。这是通过在受控环境中使用发光二极管 (LED) 灯来实现的,在具有或不具有 BL 的分块设计中,具有或不具有 UV-A 辐射。我们比较了在生长条件下和实验结束时(46 天)暴露于 30 分钟高光下酚类化合物的积累情况,同样测量了光系统 II 的操作效率(φ PSII,光合作用性能的代理)和暗适应最大量子产量(F/F 来评估 PSII 损伤)。我们的结果表明,隐花色素是调节 BL 和 UV-A 辐射响应下酚类化合物积累的主要光受体,缺乏功能的隐花色素会损害高光下的光合作用性能。我们的研究结果还揭示了 UVR8 在响应低剂量 UV-A 时积累类黄酮的作用。有趣的是,在没有 BL 的情况下,光受体 1 部分介导了酚类化合物的组成性积累。低辐照度 BL 和 UV-A 在我们的急性高光处理中并未提高φ PSII 和 F/F;然而,CRYs 在缓解高光胁迫方面发挥了重要作用。