Peng Wei, Dong Li Hu, Li Feng Ri
School of Forestry, Northeast Forestry University, Harbin 150040, China.
Ying Yong Sheng Tai Xue Bao. 2016 Dec;27(12):3749-3758. doi: 10.13287/j.1001-9332.201612.012.
Based on the biomass investigation data of main forest types in the east of Daxing'an Mountains, the additive biomass models of 3 main tree species were developed and the changes of carbon storage and allocation of forest community of tree layer, shrub layer, herb layer and litter layer from different forest types were discussed. The results showed that the carbon storage of tree layer, shrub layer, herb layer and litter layer for Rhododendron dauricum-Larix gmelinii forest was 71.00, 0.34, 0.05 and 11.97 t·hm, respectively. Similarly, the carbon storage of the four layers of Ledum palustre-L. gmelinii forest was 47.82, 0.88, 0, 5.04 t·hm, 56.56, 0.44, 0.04, 8.72 t·hm for R. dauricum-mixed forest of L. gmelinii-Betula platyphylla, 46.21, 0.66, 0.07, 6.16 t·hm for L. palustre-mixed forest of L. gmelinii-B. platyphylla, 40.90, 1.37, 0.04, 3.67 t·hm for R. dauricum-B. platyphylla forest, 36.28, 1.12, 0.18, 4.35 t·hm for L. palustre-B. platyphylla forest. The carbon storage of forest community for the understory vegetation of R. dauricum was higher than that of the forest with L. palustre. In the condition of similar circumstances for the understory, the order of carbon storage for forest community was L. gmelinii forest > the mixed forest of L. gmelinii-B. platyphylla > B. platyphylla forest. The carbon storage of different forest types was different with the order of R. dauricum-L. gmelinii forest (83.36 t·hm)> R. dauricum-mixed forest of L. gmelinii-B. platyphylla (65.76 t·hm) > L. palustre-L. gmelinii forest (53.74 t·hm)> L. palustre-mixed forest of L. gmelinii-B. platyphylla (53.10 t·hm)> R. dauricum-B. platyphylla forest (45.98 t·hm) > L. palustre-B. platyphylla forest (41.93 t·hm). The order of carbon storage for the vertical distribution in forest communities with diffe-rent forest types was the tree layer (85.2%-89.0%) > litter layer (8.0%-14.4%) > shrub layer (0.4%-2.7%) > herb layer (0-0.4%).
基于大兴安岭东部主要森林类型的生物量调查数据,建立了3种主要树种的生物量相加模型,并探讨了不同森林类型的乔木层、灌木层、草本层和凋落物层森林群落的碳储量及分配变化。结果表明,兴安杜鹃-兴安落叶松林乔木层、灌木层、草本层和凋落物层的碳储量分别为71.00、0.34、0.05和11.97 t·hm。同样,杜香-兴安落叶松林四层的碳储量分别为47.82、0.88、0、5.04 t·hm,兴安杜鹃-兴安落叶松-白桦混交林为56.56、0.44、0.04、8.72 t·hm,杜香-兴安落叶松-白桦混交林为46.21、0.66、0.07、6.16 t·hm,兴安杜鹃-白桦林为40.90、1.37、0.04、3.67 t·hm,杜香-白桦林为36.28、1.12、0.18、4.35 t·hm。兴安杜鹃林下植被的森林群落碳储量高于杜香林下植被的森林群落。在林下情况相似的条件下,森林群落碳储量顺序为兴安落叶松林>兴安落叶松-白桦混交林>白桦林。不同森林类型的碳储量不同,顺序为兴安杜鹃-兴安落叶松林(83.36 t·hm)>兴安杜鹃-兴安落叶松-白桦混交林(65.76 t·hm)>杜香-兴安落叶松林(53.74 t·hm)>杜香-兴安落叶松-白桦混交林(53.10 t·hm)>兴安杜鹃-白桦林(45.98 t·hm)>杜香-白桦林(41.93 t·hm)。不同森林类型森林群落垂直分布的碳储量顺序为乔木层(85.2%-89.0%)>凋落物层(8.0%-14.4%)>灌木层(0.4%-2.7%)>草本层(0-0.4%)。