Reynolds R Jason B, Pilon-Smits Elizabeth A H
Biology Department, Colorado State University, Fort Collins, CO 80523, USA.
Biology Department, Colorado State University, Fort Collins, CO 80523, USA.
Biochim Biophys Acta Gen Subj. 2018 Nov;1862(11):2372-2382. doi: 10.1016/j.bbagen.2018.04.018. Epub 2018 Apr 25.
Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000-15,000 mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into organic forms.
We review abiotic and biotic factors influencing soil Se distribution and bioavailability, soil being the source of the Se in hyperaccumulators. Next, we summarize the fate of Se in plants, particularly hyperaccumulators. We then extensively review the impact of plant Se accumulation on ecological interactions. Finally, we discuss the potential impact of Se hyperaccumulators on local community composition and Se cycling.
Selenium (hyper)accumulation offers ecological advantages: protection from herbivores and pathogens and competitive advantage over other plants. The extreme Se levels in and around hyperaccumulators create a toxic environment for Se-sensitive ecological partners, while offering a niche for Se-resistant partners. Through these dual effects, hyperaccumulators may influence species composition in their local environment, as well as Se cycling.
The implied effects of Se hyperaccumulation on community assembly and local Se cycling warrant further investigations into the contribution of hyperaccumulators and general terrestrial vegetation to global Se cycling and may serve as a case study for how trace elements influence ecological processes. Furthermore, understanding ecological implications of plant Se accumulation are vital for safe implementation of biofortification and phytoremediation, technologies increasingly implemented to battle Se deficiency and toxicity.
在美国西部富硒土壤中,约50种本土植物类群会出现硒(Se)超积累现象。超积累植物组织中的硒含量,干重为1000 - 15000毫克/千克,通常比周围植被高100倍。相对于其他物种,超积累植物还会将更多的硒转化为有机形式。
我们综述了影响土壤硒分布和生物有效性的非生物和生物因素,土壤是超积累植物中硒的来源。接下来,我们总结了植物中硒的归宿,特别是超积累植物中的硒。然后,我们广泛综述了植物硒积累对生态相互作用的影响。最后,我们讨论了硒超积累植物对当地群落组成和硒循环的潜在影响。
硒(超)积累具有生态优势:免受食草动物和病原体侵害,以及相对于其他植物具有竞争优势。超积累植物及其周围极高的硒含量为对硒敏感的生态伙伴创造了一个有毒环境,同时为对硒有抗性的伙伴提供了一个生态位。通过这些双重作用,超积累植物可能会影响其当地环境中的物种组成以及硒循环。
硒超积累对群落组装和当地硒循环的潜在影响,值得进一步研究超积累植物和一般陆地植被对全球硒循环的贡献,并且可以作为一个案例研究,来探讨微量元素如何影响生态过程。此外,了解植物硒积累的生态影响对于安全实施生物强化和植物修复至关重要,这些技术越来越多地用于应对硒缺乏和毒性问题。