Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia.
Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France.
Neurobiol Dis. 2018 Aug;116:28-38. doi: 10.1016/j.nbd.2018.04.016. Epub 2018 Apr 27.
Brain glucose hypometabolism is an early symptom of acquired epilepsy, its causative mechanism yet unclear. We suggest that a bidirectional positive feedback linking seizures and hypometabolism (hypometabolism induces seizures while seizures disrupt glucose metabolism) may be a primary cause for acquired epileptogenesis. We reported recently that chronic partial inhibition of brain glycolysis triggers epileptogenesis in healthy rats. Here, by monitoring dynamic electrical and multiple metabolic parameters before and following seizure generation in mouse hippocampal slices using the 4-aminopyridine model of epileptiform activity, we show that in turn seizures are followed by a long-lasting glucose hypometabolism, indicating possible existence of a positive feedback in the mechanism of epileptogenesis. Seizures were associated with acute oxidative stress that may contribute to the subsequent glucose metabolism impairment, since exogenous application of HO replicated the post-seizure metabolic effects. Exogenous pyruvate, the principal mitochondrial energy substrate with a broad spectrum of neuroprotective properties, effectively normalized the post-seizure glucose consumption. We have shown recently that pyruvate exhibited a strong antiepileptic action in three rodent chronic epilepsy models, while in the present study we find that pyruvate effectively normalizes impaired glucose metabolism following seizures. Together, our results provide the mechanistic basis for the metabolic concept of acquired epileptogenesis and an efficient treatment strategy.
脑葡萄糖代谢低下是获得性癫痫的早期症状,其发病机制尚不清楚。我们提出,癫痫发作和葡萄糖代谢低下之间的双向正反馈(葡萄糖代谢低下引起癫痫发作,而癫痫发作又破坏葡萄糖代谢)可能是获得性癫痫发生的主要原因。我们最近报道,慢性部分抑制大脑糖酵解会在健康大鼠中引发癫痫发生。在这里,我们通过使用 4-氨基吡啶癫痫样活动模型,在小鼠海马切片中监测癫痫发作前后的动态电生理和多种代谢参数,结果表明,反过来,癫痫发作后会出现长时间的葡萄糖代谢低下,这表明在癫痫发生机制中可能存在正反馈。癫痫发作伴随着急性氧化应激,这可能导致随后的葡萄糖代谢障碍,因为外源性应用 HO 复制了发作后的代谢效应。丙酮酸是主要的线粒体能量底物,具有广泛的神经保护特性,可有效使发作后葡萄糖消耗正常化。我们最近表明,丙酮酸在三种啮齿类慢性癫痫模型中表现出强烈的抗癫痫作用,而在本研究中,我们发现丙酮酸可有效使发作后受损的葡萄糖代谢正常化。综上所述,我们的研究结果为获得性癫痫发生的代谢概念和有效的治疗策略提供了机制基础。