Suppr超能文献

利用 LRET 测定 BK 通道 α-和 γ1 亚基之间的化学计量比。

Determination of the Stoichiometry between α- and γ1 Subunits of the BK Channel Using LRET.

机构信息

Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.

Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile; Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.

出版信息

Biophys J. 2018 Jun 5;114(11):2493-2497. doi: 10.1016/j.bpj.2018.04.008. Epub 2018 Apr 26.

Abstract

Two families of accessory proteins, β and γ, modulate BK channel gating and pharmacology. Notably, in the absence of internal Ca, the γ1 subunit promotes a large shift of the BK conductance-voltage curve to more negative potentials. However, very little is known about how α- and γ1 subunits interact. In particular, the association stoichiometry between both subunits is unknown. Here, we propose a method to answer this question using lanthanide resonance energy transfer. The method assumes that the kinetics of lanthanide resonance energy transfer-sensitized emission of the donor double-labeled α/γ1 complex is the linear combination of the kinetics of the sensitized emission in single-labeled complexes. We used a lanthanide binding tag engineered either into the α- or the γ1 subunits to bind Tb as the donor. The acceptor (BODIPY) was attached to the BK pore-blocker iberiotoxin. We determined that γ1 associates with the α-subunit with a maximal 1:1 stoichiometry. This method could be applied to determine the stoichiometry of association between proteins within heteromultimeric complexes.

摘要

两类辅助蛋白家族,β和γ,调节 BK 通道的门控和药理学特性。值得注意的是,在没有内部 Ca 的情况下,γ1 亚基促进 BK 电导-电压曲线向更负的电位发生大的移动。然而,人们对 α 和 γ1 亚基如何相互作用知之甚少。特别是,两个亚基之间的缔合化学计量比是未知的。在这里,我们提出了一种使用镧系元素共振能量转移来回答这个问题的方法。该方法假设镧系元素共振能量转移敏化供体双标记的 α/γ1 复合物的发射动力学是单标记复合物的敏化发射动力学的线性组合。我们使用镧系元素结合标签工程化到 α 或 γ1 亚基中以结合 Tb 作为供体。受体(BODIPY)被连接到 BK 通道阻断剂 Iberiotoxin 上。我们确定 γ1 与 α-亚基以最大 1:1 的化学计量比结合。该方法可用于确定异源多聚体复合物中蛋白质之间的缔合化学计量比。

相似文献

2
Regulatory γ1 subunits defy symmetry in functional modulation of BK channels.调节γ1 亚基在 BK 通道功能调节中打破了对称性。
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):9923-9928. doi: 10.1073/pnas.1804560115. Epub 2018 Sep 17.
7
Mechanism of beta4 subunit modulation of BK channels.BK通道β4亚基的调节机制。
J Gen Physiol. 2006 Apr;127(4):449-65. doi: 10.1085/jgp.200509436.

引用本文的文献

3
[Not Available].[无可用内容]
Andrology. 2025 Feb;13(2):184-201. doi: 10.1111/andr.13606. Epub 2024 Mar 4.
5
Regulatory mechanisms of mitochondrial BK channels.线粒体 BK 通道的调节机制。
Channels (Austin). 2021 Dec;15(1):424-437. doi: 10.1080/19336950.2021.1919463.
7
Regulation of BK Channels by Beta and Gamma Subunits.β 和 γ 亚基对 BK 通道的调节。
Annu Rev Physiol. 2019 Feb 10;81:113-137. doi: 10.1146/annurev-physiol-022516-034038.
8
Regulatory γ1 subunits defy symmetry in functional modulation of BK channels.调节γ1 亚基在 BK 通道功能调节中打破了对称性。
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):9923-9928. doi: 10.1073/pnas.1804560115. Epub 2018 Sep 17.

本文引用的文献

6
Functional regulation of BK potassium channels by γ1 auxiliary subunits.γ1 辅助亚基对 BK 钾通道功能的调节。
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4868-73. doi: 10.1073/pnas.1322123111. Epub 2014 Mar 17.
7
A BK (Slo1) channel journey from molecule to physiology.BK(Slo1)通道:从分子到生理学的历程
Channels (Austin). 2013 Nov-Dec;7(6):442-58. doi: 10.4161/chan.26242. Epub 2013 Sep 11.
9
BK potassium channel modulation by leucine-rich repeat-containing proteins.富含亮氨酸重复蛋白对 BK 钾通道的调节。
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7917-22. doi: 10.1073/pnas.1205435109. Epub 2012 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验