Suppr超能文献

利用人类视觉感知模型来改进深度学习。

Using a model of human visual perception to improve deep learning.

机构信息

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Purdue University, Department of Psychological Sciences, 703 Third Street, West Lafayette, IN 47906, United States.

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Purdue University, Department of Psychological Sciences, 703 Third Street, West Lafayette, IN 47906, United States.

出版信息

Neural Netw. 2018 Aug;104:40-49. doi: 10.1016/j.neunet.2018.04.005. Epub 2018 Apr 17.

Abstract

Deep learning algorithms achieve human-level (or better) performance on many tasks, but there still remain situations where humans learn better or faster. With regard to classification of images, we argue that some of those situations are because the human visual system represents information in a format that promotes good training and classification. To demonstrate this idea, we show how occluding objects can impair performance of a deep learning system that is trained to classify digits in the MNIST database. We describe a human inspired segmentation and interpolation algorithm that attempts to reconstruct occluded parts of an image, and we show that using this reconstruction algorithm to pre-process occluded images promotes training and classification performance.

摘要

深度学习算法在许多任务上达到了人类水平(或更高),但仍有一些情况是人类学得更好或更快。就图像分类而言,我们认为其中一些情况是因为人类视觉系统以促进良好训练和分类的格式表示信息。为了证明这一观点,我们展示了遮挡物体如何影响深度学习系统的性能,该系统被训练来对 MNIST 数据库中的数字进行分类。我们描述了一种受人类启发的分割和插值算法,该算法试图重建图像的遮挡部分,并展示了使用此重建算法对遮挡图像进行预处理可以提高训练和分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验