Suppr超能文献

一种使用域转移深度卷积神经网络的新型端到端生物医学图像分类器。

A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.

作者信息

Pang Shuchao, Yu Zhezhou, Orgun Mehmet A

机构信息

College of Computer Science and Technology, Jilin University, Qianjin Street: 2699, Jilin Province, China; Department of Computing, Macquarie University, Sydney, NSW 2109, Australia.

College of Computer Science and Technology, Jilin University, Qianjin Street: 2699, Jilin Province, China.

出版信息

Comput Methods Programs Biomed. 2017 Mar;140:283-293. doi: 10.1016/j.cmpb.2016.12.019. Epub 2017 Jan 6.

Abstract

BACKGROUND AND OBJECTIVES

Highly accurate classification of biomedical images is an essential task in the clinical diagnosis of numerous medical diseases identified from those images. Traditional image classification methods combined with hand-crafted image feature descriptors and various classifiers are not able to effectively improve the accuracy rate and meet the high requirements of classification of biomedical images. The same also holds true for artificial neural network models directly trained with limited biomedical images used as training data or directly used as a black box to extract the deep features based on another distant dataset. In this study, we propose a highly reliable and accurate end-to-end classifier for all kinds of biomedical images via deep learning and transfer learning.

METHODS

We first apply domain transferred deep convolutional neural network for building a deep model; and then develop an overall deep learning architecture based on the raw pixels of original biomedical images using supervised training. In our model, we do not need the manual design of the feature space, seek an effective feature vector classifier or segment specific detection object and image patches, which are the main technological difficulties in the adoption of traditional image classification methods. Moreover, we do not need to be concerned with whether there are large training sets of annotated biomedical images, affordable parallel computing resources featuring GPUs or long times to wait for training a perfect deep model, which are the main problems to train deep neural networks for biomedical image classification as observed in recent works.

RESULTS

With the utilization of a simple data augmentation method and fast convergence speed, our algorithm can achieve the best accuracy rate and outstanding classification ability for biomedical images. We have evaluated our classifier on several well-known public biomedical datasets and compared it with several state-of-the-art approaches.

CONCLUSIONS

We propose a robust automated end-to-end classifier for biomedical images based on a domain transferred deep convolutional neural network model that shows a highly reliable and accurate performance which has been confirmed on several public biomedical image datasets.

摘要

背景与目的

生物医学图像的高精度分类是从这些图像中识别众多医学疾病临床诊断中的一项重要任务。传统的图像分类方法结合手工制作的图像特征描述符和各种分类器,无法有效提高准确率,难以满足生物医学图像分类的高要求。对于直接使用有限的生物医学图像作为训练数据进行训练或直接作为黑箱基于另一个远距离数据集提取深度特征的人工神经网络模型来说,情况也是如此。在本研究中,我们通过深度学习和迁移学习为各类生物医学图像提出了一种高度可靠且准确的端到端分类器。

方法

我们首先应用领域转移深度卷积神经网络来构建一个深度模型;然后使用监督训练基于原始生物医学图像的原始像素开发一个整体的深度学习架构。在我们的模型中,我们不需要手动设计特征空间、寻找有效的特征向量分类器或分割特定的检测对象和图像块,这些是采用传统图像分类方法时的主要技术难题。此外,我们不需要担心是否有大量带注释的生物医学图像训练集、具备图形处理器(GPU)的可承受并行计算资源或等待训练一个完美深度模型的长时间,这些是近期研究中观察到的用于生物医学图像分类训练深度神经网络的主要问题。

结果

通过使用一种简单的数据增强方法和快速的收敛速度,我们的算法能够实现生物医学图像的最佳准确率和出色的分类能力。我们在几个著名的公共生物医学数据集上评估了我们的分类器,并将其与几种先进方法进行了比较。

结论

我们基于领域转移深度卷积神经网络模型提出了一种用于生物医学图像的强大自动化端到端分类器,该模型在几个公共生物医学图像数据集上表现出高度可靠和准确的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验