Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
Phys Chem Chem Phys. 2018 May 9;20(18):12986-12991. doi: 10.1039/c7cp07247c.
Developing a molecular-level understanding of how a hot electron transfer process can be enhanced at semiconductor-molecule interfaces is central to advancing various future technologies. Using first-principles quantum dynamics simulations, we investigate how surface coverage and molecular adsorbate species influence the hot electron transfer at semiconductor-molecule interfaces. Counterintuitively, hot electron transfer from the semiconductor to molecules was found to be lessened with increased surface coverage because the inter-molecular interaction changes nonadiabatic couplings across the semiconductor and adsorbed molecules. The adsorbate molecular species itself was found to be an important factor in hot electron transfer not simply because of the energy level alignments at the interface, but also because the transfer is quite sensitive to nonadiabatic couplings. Our work shows that relatively minor variations of the couplings could lead to significant changes in hot electron transfer characteristics at semiconductor-molecule interfaces. Controlling nonadiabatic couplings must be part of developing a molecular-level "design principle" for enhancing hot electron transfer in addition to the well-recognized importance of energy level alignments.
发展对半导体-分子界面上热电子转移过程如何增强的分子水平理解,对于推进各种未来技术至关重要。我们使用第一性原理量子动力学模拟,研究了表面覆盖率和分子吸附物种如何影响半导体-分子界面上的热电子转移。反直觉的是,随着表面覆盖率的增加,半导体到分子的热电子转移减少了,因为分子间相互作用改变了半导体和吸附分子的非绝热耦合。吸附分子物种本身被发现是热电子转移的一个重要因素,这不仅仅是因为界面处的能级对准,还因为转移对非绝热耦合非常敏感。我们的工作表明,耦合的相对较小变化可能导致半导体-分子界面上热电子转移特性的显著变化。除了能级对准的重要性外,控制非绝热耦合必须成为开发增强热电子转移的分子水平“设计原理”的一部分。