Huang Tingyu, Yan Peifang, Xu Zhanwei, Liu Xiumei, Xin Qin, Liu Haitao, Zhang Z Conrad
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy , Dalian Institute of Chemical Physics, Chinese Academy of Science , 457 Zhongshan Road , Dalian 116023 , China.
University of Chinese Academy of Sciences , Beijing 10049 , China.
J Phys Chem B. 2018 Jun 7;122(22):6007-6016. doi: 10.1021/acs.jpcb.8b03178. Epub 2018 May 17.
High methane dissolution capacity in a liquid is important for methane storage and transformation. In this work, methane solubility in different ionic liquids (ILs) was studied and was found associated with IL's structural and physical properties. In imidazolium-based ILs, ILs containing C-F and long alkyl chain showed high methane solubility mainly due to lower surface tension and molar density. Reducing the surface tension of solvent by adding 0.16 mol of trimethyl-1-propanaminium iodide (FC-134) with respect to [Bmim][NTf] increased methane solubility by 39.3%. In situ high-pressure attenuated total reflection Fourier transform infrared spectroscopic results indicated a reversible process of methane dissolution in the ILs. The antisymmetric C-H stretching band of dissolved methane in ILs showed highly prominent rotational-vibrational bands with high intensity and narrow half-peak width compared to gaseous methane. Induced interaction between methane and IL resulted in increased dipole variation strength and reduced methane molecular symmetry. The constant antisymmetric C-H stretching peak at 3016.85 cm revealed an unconstrained methane rotation in the stable physical and chemical environment of IL. Methane insertion into the IL's intranetwork space needs activation energy to overcome the interaction of cation-anion network. Kinetic analysis of methane in [Bmim][NTf] and [Bmim][HSO] at different temperatures indicated that methane dissolution in these two ILs was a reversible first-order and very weak endothermic process and that methane dissolution required high activation energy in ILs with stronger cation-anion interaction.
液体中高的甲烷溶解能力对于甲烷的储存和转化很重要。在本工作中,研究了甲烷在不同离子液体(ILs)中的溶解度,并发现其与离子液体的结构和物理性质有关。在咪唑基离子液体中,含有C-F和长烷基链的离子液体显示出高的甲烷溶解度,这主要归因于较低的表面张力和摩尔密度。相对于[Bmim][NTf],添加0.16 mol的三甲基-1-丙胺碘化物(FC-134)来降低溶剂的表面张力,使甲烷溶解度提高了39.3%。原位高压衰减全反射傅里叶变换红外光谱结果表明甲烷在离子液体中的溶解是一个可逆过程。与气态甲烷相比,离子液体中溶解甲烷的反对称C-H伸缩带显示出具有高强度和窄半峰宽的高度突出的转动-振动带。甲烷与离子液体之间的诱导相互作用导致偶极变化强度增加和甲烷分子对称性降低。在3016.85 cm处恒定的反对称C-H伸缩峰表明在离子液体稳定的物理和化学环境中甲烷有不受限制的转动。甲烷插入离子液体网络内部空间需要活化能来克服阳离子-阴离子网络的相互作用。在不同温度下对[Bmim][NTf]和[Bmim][HSO]中甲烷的动力学分析表明,甲烷在这两种离子液体中的溶解是一个可逆的一级且非常弱的吸热过程,并且在阳离子-阴离子相互作用更强的离子液体中甲烷溶解需要高活化能。