Department of Chemistry, University of Massachusetts, Amherst, MA, USA.
Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA.
Nat Chem. 2018 Jun;10(6):659-666. doi: 10.1038/s41557-018-0027-6. Epub 2018 Apr 30.
Nature has engineered exquisitely responsive systems where molecular-scale information is transferred across an interface and propagated over long length scales. Such systems rely on multiple interacting, signalling and adaptable molecular and supramolecular networks that are built on dynamic, non-equilibrium structures. Comparable synthetic systems are still in their infancy. Here, we demonstrate that the light-induced actuation of a molecularly thin interfacial layer, assembled from a hydrophilic- azobenzene -hydrophobic diblock copolymer, can result in a reversible, long-lived perturbation of a robust glassy membrane across a range of over 500 chemical bonds. We show that the out-of-equilibrium actuation is caused by the photochemical trans-cis isomerization of the azo group, a single chemical functionality, in the middle of the interfacial layer. The principles proposed here are implemented in water-dispersed nanocapsules, and have implications for on-demand release of embedded cargo molecules.
大自然设计出了精妙的响应系统,其中分子尺度的信息在界面上传递,并在长距离尺度上传播。这些系统依赖于多个相互作用、信号传递和自适应的分子和超分子网络,这些网络建立在动态、非平衡的结构上。类似的合成系统仍处于起步阶段。在这里,我们证明了由亲水性-偶氮苯-疏水性二嵌段共聚物组装而成的分子薄界面层的光致动可以导致坚固的玻璃膜在超过 500 个化学键的范围内发生可逆的、长寿命的扰动。我们表明,非平衡致动是由界面层中间偶氮基团的光化学反式-顺式异构化引起的,偶氮基团是一种单一的化学官能团。这里提出的原理在水分散纳米胶囊中得到了实施,并对嵌入货物分子的按需释放具有重要意义。