Edelen Ashley, Ingwersen Wesley W
Oak Ridge Institute for Science and Education (ORISE), Oak Ridge TN USA.
Life Cycle Assessment Center of Excellence, National Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA.
Int J Life Cycle Assess. 2018 Apr 1;23(4):759-772. doi: 10.1007/s11367-017-1348-1.
Despite growing access to data, questions of "best fit" data and the appropriate use of results in supporting decision making still plague the life cycle assessment (LCA) community. This discussion paper addresses revisions to assessing data quality captured in a new US Environmental Protection Agency guidance document as well as additional recommendations on data quality creation, management, and use in LCA databases and studies.
Existing data quality systems and approaches in LCA were reviewed and tested. The evaluations resulted in a revision to a commonly used pedigree matrix, for which flow and process level data quality indicators are described, more clarity for scoring criteria, and further guidance on interpretation are given.
Increased training for practitioners on data quality application and its limits are recommended. A multi-faceted approach to data quality assessment utilizing the pedigree method alongside uncertainty analysis in result interpretation is recommended. A method of data quality score aggregation is proposed and recommendations for usage of data quality scores in existing data are made to enable improved use of data quality scores in LCA results interpretation. Roles for data generators, data repositories, and data users are described in LCA data quality management. Guidance is provided on using data with data quality scores from other systems alongside data with scores from the new system. The new pedigree matrix and recommended data quality aggregation procedure can now be implemented in openLCA software.
Additional ways in which data quality assessment might be improved and expanded are described. Interoperability efforts in LCA data should focus on descriptors to enable user scoring of data quality rather than translation of existing scores. Developing and using data quality indicators for additional dimensions of LCA data, and automation of data quality scoring through metadata extraction and comparison to goal and scope are needed.
尽管获取数据的途径日益增多,但“最匹配”数据的问题以及结果在支持决策方面的恰当使用仍困扰着生命周期评估(LCA)领域。本讨论文件论述了美国环境保护局一份新指导文件中对评估数据质量的修订内容,以及关于LCA数据库和研究中数据质量创建、管理和使用的其他建议。
对LCA中现有的数据质量系统和方法进行了审查和测试。评估结果导致对常用的谱系矩阵进行了修订,其中描述了流程和过程层面的数据质量指标,评分标准更加清晰,并给出了进一步的解释指南。
建议加强对从业者在数据质量应用及其局限性方面的培训。建议采用多方面的数据质量评估方法,将谱系方法与结果解释中的不确定性分析相结合。提出了一种数据质量得分汇总方法,并对现有数据中数据质量得分的使用提出了建议,以便在LCA结果解释中更好地使用数据质量得分。阐述了数据生成者、数据存储库和数据使用者在LCA数据质量管理中的作用。提供了关于将来自其他系统的数据质量得分的数据与来自新系统得分的数据一起使用的指南。新的谱系矩阵和推荐的数据质量汇总程序现在可以在openLCA软件中实施。
描述了数据质量评估可能得到改进和扩展的其他方式。LCA数据的互操作性工作应侧重于描述符,以实现用户对数据质量的评分,而不是对现有分数进行转换。需要为LCA数据的其他维度开发和使用数据质量指标,并通过元数据提取以及与目标和范围进行比较来实现数据质量评分的自动化。