Dreyer Nancy A
1 IQVIA Real-World & Analytic Solutions, Cambridge, MA, USA.
Ther Innov Regul Sci. 2018 May;52(3):362-368. doi: 10.1177/2168479018763591. Epub 2018 Mar 19.
There is growing interest in regulatory use of randomized pragmatic trials and noninterventional real-world (RW) studies of effectiveness and safety, but there is no agreed-on framework for assessing when this type of evidence is sufficiently reliable. Rather than impose a clinical trial-like paradigm on RW evidence, like blinded treatments or complete, source-verified data, the framework for assessing the utility of RW evidence should be grounded in the context of specific study objectives, clinical events that are likely to be detected in routine care, and the extent to which systematic error (bias) is likely to impact effect estimation. Whether treatment is blinded should depend on how well the outcome can be measured objectively. Qualification of a data source should be based on (1) numbers of patients of interest available for study; (2) if "must-have" data are likely to be recorded, and if so, how and where; (3) the accessibility of systematic follow-up data for the time period of interest; and (4) the potential for systematic errors (bias) in data collection and the likely magnitude of any such bias. Accessible data may not be representative of an entire population, but still may provide reliable evidence about the experience of typical patients treated under conditions of conventional care. Similarly, RW data that falls short of optimal length of follow-up or study size may still be useful in terms of its ability to provide evidence for regulators for subgroups of special interest. Developing a framework to qualify RW evidence in the context of a particular study purpose and data asset will enable broader regulatory use of RW data for approval of new molecular entities and label changes. Reliable information about diverse populations and settings should also help us move closer to more affordable, effective health care.
对于将随机实用试验以及有效性和安全性的非干预性真实世界(RW)研究用于监管目的的兴趣与日俱增,但目前尚无一个商定的框架来评估这类证据何时足够可靠。评估RW证据效用的框架不应像在临床试验中那样,对RW证据强加类似的范式,比如盲法治疗或完整的、经过源验证的数据,而应基于特定的研究目标、在常规护理中可能检测到的临床事件,以及系统误差(偏差)可能影响效应估计的程度。治疗是否采用盲法应取决于结果能否被客观测量。数据源的资格认定应基于:(1)可供研究的感兴趣患者数量;(2)是否可能记录“必备”数据,如果是,如何记录以及在哪里记录;(3)在感兴趣的时间段内获取系统随访数据的难易程度;(4)数据收集过程中出现系统误差(偏差)的可能性以及任何此类偏差可能的大小。可获取的数据可能并不代表整个人口,但仍可能提供关于在常规护理条件下接受治疗的典型患者经历的可靠证据。同样,随访时间长度或研究规模未达最优的RW数据,就其为监管机构提供有关特别感兴趣亚组的证据的能力而言,仍可能有用。在特定研究目的和数据资产的背景下制定一个对RW证据进行资格认定的框架,将使RW数据能更广泛地用于监管,以批准新分子实体和标签变更。关于不同人群和环境的可靠信息也应有助于我们更接近实现更经济、有效的医疗保健。