Medtronic Europe, Tolochenaz, Switzerland.
Medtronic Inc, Minneapolis, Minnesota.
Heart Rhythm. 2018 Sep;15(9):1404-1410. doi: 10.1016/j.hrthm.2018.04.032. Epub 2018 Apr 30.
We developed a vasovagal syncope (VVS) prediction algorithm for use during head-up tilt with simultaneous analysis of heart rate (HR) and systolic blood pressure (SBP). We previously tested this algorithm retrospectively in 1155 subjects, showing sensitivity 95%, specificity 93%, and median prediction time 59 seconds.
The purpose of this prospective, single-center study of 140 subjects was to evaluate this VVS prediction algorithm and to assess whether retrospective results were reproduced and clinically relevant. The primary endpoint was VVS prediction: sensitivity and specificity >80%.
In subjects referred for 60° head-up tilt (Italian protocol), noninvasive HR and SBP were supplied to the VVS prediction algorithm: simultaneous analysis of RR intervals, SBP trends, and their variability represented by low-frequency power-generated cumulative risk, which was compared with a predetermined VVS risk threshold. When cumulative risk exceeded threshold, an alert was generated. Prediction time was duration between first alert and syncope.
Of the 140 subjects enrolled, data were usable for 134. Of 83 tilt-positive subjects (61.9%), 81 VVS events were correctly predicted by the algorithm, and of 51 tilt-negative subjects (38.1%), 45 were correctly identified as negative by the algorithm. Resulting algorithm performance was sensitivity 97.6% and specificity 88.2%, meeting the primary endpoint. Mean VVS prediction time was 2 minutes 26 seconds ± 3 minutes 16 seconds (median 1 minute 25 seconds). Using only HR and HR variability (without SBP), mean prediction time reduced to 1 minute 34 seconds ± 1 minute 45 seconds (median 1 minute 13 seconds).
The VVS prediction algorithm is a clinically relevant tool and could offer applications, including providing a patient alarm, shortening tilt-test time, and triggering pacing intervention in implantable devices.
我们开发了一种血管迷走性晕厥(VVS)预测算法,用于头高位倾斜试验期间同时分析心率(HR)和收缩压(SBP)。我们之前对 1155 名受试者进行了回顾性测试,结果显示敏感性为 95%,特异性为 93%,预测时间中位数为 59 秒。
本前瞻性、单中心研究纳入 140 名受试者,旨在评估该 VVS 预测算法,并评估是否重现了回顾性结果,以及是否具有临床相关性。主要终点是 VVS 预测:敏感性和特异性>80%。
在因 60°头高位倾斜而被转诊的受试者(意大利方案)中,非侵入性 HR 和 SBP 被提供给 VVS 预测算法:RR 间期、SBP 趋势及其变异性的同步分析,其由低频功率生成的累积风险表示,该风险与预先确定的 VVS 风险阈值进行比较。当累积风险超过阈值时,会生成警报。预测时间是从第一次警报到晕厥之间的持续时间。
在纳入的 140 名受试者中,有 134 名的数据可用。在 83 名倾斜阳性受试者(61.9%)中,算法正确预测了 81 次 VVS 事件,在 51 名倾斜阴性受试者(38.1%)中,算法正确识别了 45 次为阴性。由此产生的算法性能为敏感性 97.6%,特异性 88.2%,达到了主要终点。平均 VVS 预测时间为 2 分 26 秒±3 分 16 秒(中位数 1 分 25 秒)。仅使用 HR 和 HR 变异性(不使用 SBP),预测时间平均缩短至 1 分 34 秒±1 分 45 秒(中位数 1 分 13 秒)。
VVS 预测算法是一种具有临床相关性的工具,可能具有应用价值,包括提供患者警报、缩短倾斜试验时间和在植入式设备中触发起搏干预。