Suppr超能文献

引力波监测计划:整合先进的激光干涉引力波天文台(LIGO)探测器特性、机器学习与公民科学。

Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science.

作者信息

Zevin M, Coughlin S, Bahaadini S, Besler E, Rohani N, Allen S, Cabero M, Crowston K, Katsaggelos A K, Larson S L, Lee T K, Lintott C, Littenberg T B, Lundgren A, Østerlund C, Smith J R, Trouille L, Kalogera V

机构信息

Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Deptartment of Physics and Astronomy, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, United States of America.

Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60201, United States of America.

出版信息

Class Quantum Gravity. 2017;34(No 6). doi: 10.1088/1361-6382/aa5cea. Epub 2017 Feb 28.

Abstract

With the first direct detection of gravitational waves, the advanced laser interferometer gravitational-wave observatory (LIGO) has initiated a new field of astronomy by providing an alternative means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as , which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. Glitches come in a wide range of time-frequency-amplitude morphologies, with new morphologies appearing as the detector evolves. Since they can obscure or mimic true gravitational-wave signals, a robust characterization of glitches is paramount in the effort to achieve the gravitational-wave detection rates that are predicted by the design sensitivity of LIGO. This proves a daunting task for members of the LIGO Scientific Collaboration alone due to the sheer amount of data. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of time-frequency representations of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual classifier. The resulting classification and characterization should help LIGO scientists to identify causes of glitches and subsequently eliminate them from the data or the detector entirely, thereby improving the rate and accuracy of gravitational-wave observations. We demonstrate these methods using a small subset of data from LIGO's first observing run.

摘要

随着引力波的首次直接探测,先进激光干涉引力波天文台(LIGO)通过提供一种感知宇宙的替代手段,开创了一个新的天文学领域。实现这种探测所需的极高灵敏度是通过将LIGO的所有敏感组件与非引力波干扰进行精确隔离来实现的。尽管如此,LIGO仍然容易受到各种仪器和环境噪声源的影响,这些噪声会污染数据。特别令人关注的是被称为毛刺的噪声特征,它们本质上是瞬态且非高斯的,并且出现频率足够高,以至于两个LIGO探测器之间的偶然巧合不可忽略。毛刺具有广泛的时频幅度形态,随着探测器的发展会出现新的形态。由于它们可能会掩盖或模拟真正的引力波信号,因此对毛刺进行稳健的表征对于实现LIGO设计灵敏度所预测的引力波探测率至关重要。仅对于LIGO科学合作组织的成员来说,这就是一项艰巨的任务,因为数据量巨大。在本文中,我们描述了一个创新项目,该项目将众包与机器学习相结合,以协助完成对LIGO探测器记录的所有毛刺进行分类这一具有挑战性的任务。通过Zooniverse平台,我们吸引并招募公众志愿者,将毛刺的时频表示图像分类到预先确定的形态类别中,并发现随着探测器发展而出现的新类别。此外,机器学习算法在经过形态类别的人工分类示例训练后,用于对图像进行分类。利用这两种分类方法的优势,我们创建了一种组合方法,旨在提高每个单独分类器的效率和准确性。最终的分类和表征应有助于LIGO科学家识别毛刺的成因,并随后从数据或探测器中完全消除它们,从而提高引力波观测的速率和准确性。我们使用LIGO首次观测运行的一小部分数据来演示这些方法。

相似文献

1
Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science.
Class Quantum Gravity. 2017;34(No 6). doi: 10.1088/1361-6382/aa5cea. Epub 2017 Feb 28.
2
Characterizing transient noise in the LIGO detectors.
Philos Trans A Math Phys Eng Sci. 2018 May 28;376(2120). doi: 10.1098/rsta.2017.0286.
4
LIGO: The Laser Interferometer Gravitational-Wave Observatory.
Science. 1992 Apr 17;256(5055):325-33. doi: 10.1126/science.256.5055.325.
5
Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy.
Phys Rev Lett. 2019 Dec 6;123(23):231107. doi: 10.1103/PhysRevLett.123.231107.
6
Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA.
Living Rev Relativ. 2018;21(1):3. doi: 10.1007/s41114-018-0012-9. Epub 2018 Apr 26.
7
Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo.
Living Rev Relativ. 2016;19(1):1. doi: 10.1007/lrr-2016-1. Epub 2016 Feb 8.
8
Effects of transients in LIGO suspensions on searches for gravitational waves.
Rev Sci Instrum. 2017 Dec;88(12):124501. doi: 10.1063/1.5000264.
9
Implications of Dedicated Seismometer Measurements on Newtonian-Noise Cancellation for Advanced LIGO.
Phys Rev Lett. 2018 Nov 30;121(22):221104. doi: 10.1103/PhysRevLett.121.221104.
10
GW150914: The Advanced LIGO Detectors in the Era of First Discoveries.
Phys Rev Lett. 2016 Apr 1;116(13):131103. doi: 10.1103/PhysRevLett.116.131103. Epub 2016 Mar 31.

引用本文的文献

1
AI-enhanced collective intelligence.
Patterns (N Y). 2024 Oct 10;5(11):101074. doi: 10.1016/j.patter.2024.101074. eCollection 2024 Nov 8.
2
Crowdsourcing with the drift diffusion model of decision making.
Sci Rep. 2024 May 17;14(1):11311. doi: 10.1038/s41598-024-61687-y.
4
Applications and Techniques for Fast Machine Learning in Science.
Front Big Data. 2022 Apr 12;5:787421. doi: 10.3389/fdata.2022.787421. eCollection 2022.
5
Inference-Optimized AI and High Performance Computing for Gravitational Wave Detection at Scale.
Front Artif Intell. 2022 Feb 16;5:828672. doi: 10.3389/frai.2022.828672. eCollection 2022.
6
Model-free detection of unique events in time series.
Sci Rep. 2022 Jan 7;12(1):227. doi: 10.1038/s41598-021-03526-y.
7
Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach.
Sensors (Basel). 2021 May 3;21(9):3174. doi: 10.3390/s21093174.
8
Citizen science as a data-based practice: A consideration of data justice.
Patterns (N Y). 2021 Mar 23;2(4):100224. doi: 10.1016/j.patter.2021.100224. eCollection 2021 Apr 9.
9
Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA.
Living Rev Relativ. 2020;23(1):3. doi: 10.1007/s41114-020-00026-9. Epub 2020 Sep 28.
10
Open Humans: A platform for participant-centered research and personal data exploration.
Gigascience. 2019 Jun 1;8(6). doi: 10.1093/gigascience/giz076.

本文引用的文献

1
Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914.
Class Quantum Gravity. 2016 Jul 7;33(13). doi: 10.1088/0264-9381/33/13/134001. Epub 2016 Jun 6.
2
Erratum: Tests of General Relativity with GW150914 [Phys. Rev. Lett. 116, 221101 (2016)].
Phys Rev Lett. 2018 Sep 21;121(12):129902. doi: 10.1103/PhysRevLett.121.129902.
3
GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.
Phys Rev Lett. 2016 Jun 17;116(24):241103. doi: 10.1103/PhysRevLett.116.241103. Epub 2016 Jun 15.
4
GW150914: The Advanced LIGO Detectors in the Era of First Discoveries.
Phys Rev Lett. 2016 Apr 1;116(13):131103. doi: 10.1103/PhysRevLett.116.131103. Epub 2016 Mar 31.
5
Teaching posttraining: influencing diagnostic strategy with instructions at test.
J Exp Psychol Appl. 2011 Sep;17(3):195-209. doi: 10.1037/a0024461.
6
Ideals and category typicality.
J Exp Psychol Learn Mem Cogn. 2011 Sep;37(5):1092-112. doi: 10.1037/a0023916.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验