Suppr超能文献

一种金纳米粒子塞住的[2]轮烷。

A gold-nanoparticle stoppered [2]rotaxane.

机构信息

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.

出版信息

Nanoscale. 2018 May 17;10(19):9133-9140. doi: 10.1039/c8nr01622d.

Abstract

The construction of molecular machines has captured the imagination of scientists for decades. Despite significant progress in the synthesis and studies of the properties of small-molecule components (smaller than 2-5 kilo Dalton), challenges regarding the incorporation of molecular components into real devices are still eminent. Nano-sized molecular machines operate the complex biological machinery of life, and the idea of mimicking the amazing functions using artificial nano-structures is intriguing. Both in small-molecule molecular machine components and in many naturally occurring molecular machines, mechanically interlocked molecules and structures are key functional components. In this work, we describe our initial efforts to interface mechanically-interlocked molecules and gold-nanoparticles (AuNPs); the molecular wire connecting the AuNPs is covered in an insulating rotaxane-layer, thus mimicking the macroscopic design of a copper wire. Taking advantage of recent progress in the preparation of supramolecular complexes of the cucurbit[7]uril (CB[7]) macrocycle, we have prepared a bis-thiol functionalised pseudo-rotaxane that enables us to prepare a AuNP-stoppered [2]rotaxane in water. The pseudo-rotaxane is held together extremely tightly (Ka > 1013 M-1), Ka being the association constant. We have studied the solution and gas phase guest-host chemistry using NMR spectroscopy, mass spectroscopy, and electrochemistry. The bis-thiol functionalised pseudo-rotaxane holds further a ferrocene unit in the centre of the rotaxane; this ferrocene unit enables us to address the system in detail with and without CB[7] and AuNPs using electrochemical methods.

摘要

分子机器的构建已经吸引了科学家们几十年的想象力。尽管在小分子组件(小于 2-5 千道尔顿)的合成和性质研究方面取得了重大进展,但将分子组件纳入实际设备仍然面临挑战。纳米级分子机器操作着生命复杂的生物机制,使用人工纳米结构模拟这些惊人功能的想法很吸引人。在小分子分子机器组件和许多天然存在的分子机器中,机械互锁分子和结构是关键的功能组件。在这项工作中,我们描述了我们最初努力将机械互锁分子与金纳米粒子(AuNPs)接口的努力;连接 AuNPs 的分子线被绝缘轮烷层覆盖,从而模拟了宏观设计的铜丝。利用最近在葫芦[7]脲(CB[7])大环的超分子配合物制备方面的进展,我们制备了一种双硫醇功能化的拟轮烷,使我们能够在水中制备 AuNP 塞的[2]轮烷。拟轮烷的结合非常紧密(Ka > 1013 M-1),Ka 是结合常数。我们使用 NMR 光谱、质谱和电化学研究了溶液和气相的主客体化学。双硫醇功能化的拟轮烷在轮烷的中心还保持一个二茂铁单元;这个二茂铁单元使我们能够使用电化学方法详细研究有无 CB[7]和 AuNPs 的情况下的系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验