Suppr超能文献

生物活性肽基元对聚(环氧乙烷)刷的分子结构、荷电和抗污性能的影响。

Impact of Bioactive Peptide Motifs on Molecular Structure, Charging, and Nonfouling Properties of Poly(ethylene oxide) Brushes.

机构信息

Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovskeho nam. 2 , 162 06 Prague 6 , Czech Republic.

Max Bergmann Center of Biomaterials Dresden , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany.

出版信息

Langmuir. 2018 May 29;34(21):6010-6020. doi: 10.1021/acs.langmuir.8b00441. Epub 2018 May 18.

Abstract

Polymer layers capable of suppressing protein adsorption from biological media while presenting extracellular matrix-derived peptide motifs offer valuable new options for biomimetic surface engineering. Herein, we provide detailed insights into physicochemical changes induced in a nonfouling poly(ethylene oxide) (PEO) brush/polydopamine (PDA) system by incorporation of adhesion ligand (RGD) peptides. Brushes with high surface chain densities (σ ≥ 0.5 chains·nm) and pronounced hydrophilicity (water contact angles ≤ 10°) were prepared by end-tethering of heterobifunctional PEOs ( M ≈ 20 000 g·mol) to PDA-modified surfaces from a reactive melt. Using alkyne distal end group on the PEO chains, azidopentanoic-bearing peptides were coupled through a copper-catalyzed Huisgen azide-alkyne "click" cycloaddition reaction. The surface concentration of RGD was tuned from complete saturation of the PEO surface with peptides (1.7 × 10 fmol·cm) to values which may induce distinct differences in cell adhesion (<6.0 × 10 fmol·cm). Infrared reflection-absorption and X-ray photoelectron spectroscopies proved the PDA-PEO layers covalent structure and the immobilization of RGD peptides. The complete reconstruction of experimental electrohydrodynamics data utilizing mean-field theory predictions further verified the attained brush structure of the end-tethered PEO chains which provided hydrodynamic screening of the PDA anchor. Increasing the surface concentration of immobilized RGD peptides led to increased interfacial charging. Supported by simulations, this observation was attributed to the ionization of functional groups in the amino acid sequence and to the pH-dependent adsorption of water ions (OH > HO) from the electrolyte. Despite the distinct differences observed in the electrokinetic analysis of the surfaces bearing different amounts of RGD, it was found that the peptide presence on PEO(20 000)-PDA layers does not have a significant effect on the nonfouling properties of the system. Notably, the presented PEO(20 000)-PDA layers bearing RGD peptides in the surface concentration range 5.9 to 1.7 × 10 fmol·cm reduced the protein adsorption from fetal bovine serum to less than 30 ng·cm, that is, values comparable to the ones obtained for pristine PEO(20 000)-PDA layers.

摘要

能够抑制生物介质中蛋白质吸附的聚合物层,同时呈现细胞外基质衍生的肽基序,为仿生表面工程提供了有价值的新选择。在此,我们深入了解了通过掺入粘附配体(RGD)肽,非固着聚(环氧乙烷)(PEO)刷/聚多巴胺(PDA)系统中引起的物理化学变化。通过将杂双官能 PEO(M ≈ 20000 g·mol)的末端连接到 PDA 改性表面,制备了具有高表面链密度(σ≥0.5 链·nm)和明显亲水性(水接触角≤10°)的刷。使用 PEO 链上的炔基末端基团,通过铜催化的叠氮化物-炔烃“点击”环加成反应将带有叠氮戊酸的肽偶联。RGD 的表面浓度可从肽完全饱和 PEO 表面(1.7×10 fmol·cm)调至可能引起细胞粘附明显差异的值(<6.0×10 fmol·cm)。红外反射吸收和 X 射线光电子能谱证明了 PDA-PEO 层的共价结构和 RGD 肽的固定化。利用平均场理论预测对实验电动力学数据的完全重建进一步验证了末端连接的 PEO 链的刷状结构,该结构为 PDA 锚提供了流体动力学屏蔽。固定化 RGD 肽的表面浓度增加导致界面充电增加。通过模拟支持,这种观察归因于氨基酸序列中官能团的电离以及电解质中从水离子(OH>HO)的 pH 依赖性吸附。尽管在具有不同 RGD 量的表面的动电分析中观察到明显差异,但发现 PEO(20000)-PDA 层上的肽存在对系统的非固着性质没有重大影响。值得注意的是,在所呈现的表面浓度范围为 5.9 至 1.7×10 fmol·cm 的 RGD 肽的 PEO(20000)-PDA 层上,从胎牛血清中减少蛋白质吸附到小于 30 ng·cm,即与原始 PEO(20000)-PDA 层获得的值相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验