Suppr超能文献

未质子化的短链烷基胺以细胞壁磷壁酸依赖的方式抑制溶葡萄球菌素的溶菌活性。

Unprotonated Short-Chain Alkylamines Inhibit Staphylolytic Activity of Lysostaphin in a Wall Teichoic Acid-Dependent Manner.

机构信息

Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.

Global Home Care Early Research and Formula Fundamentals (MX-GTC), Colgate-Palmolive, Colonia Granada, Mexico City, Mexico.

出版信息

Appl Environ Microbiol. 2018 Jul 2;84(14). doi: 10.1128/AEM.00693-18. Print 2018 Jul 15.

Abstract

Lysostaphin (Lst) is a potent bacteriolytic enzyme that kills , a common bacterial pathogen of humans and animals. With high activity against both planktonic cells and biofilms, Lst has the potential to be used in industrial products, such as commercial cleansers, for decontamination. However, Lst is inhibited in the presence of monoethanolamine (MEA), a chemical widely used in cleaning solutions and pharmaceuticals, and the underlying mechanism of inhibition remains unknown. In this study, we examined the cell binding and killing capabilities of Lst against ATCC 6538 in buffered salt solution with MEA at different pH values (7.5 to 10.5) and discovered that only the unprotonated form of MEA inhibited Lst binding to the cell surface, leading to low Lst activity, despite retention of its secondary structure. This reduced enzyme activity could be largely recovered via a reduction in wall teichoic acid (WTA) biosynthesis through tunicamycin treatment, indicating that the suppression of Lst activity was dependent on the presence and amount of WTA. We propose that the decreased cell binding and killing capabilities of Lst are associated with the influence of uncharged MEA on the conformation of WTA. A similar effect was confirmed with other short-chain alkylamines. This study offers new insight into the impact of short-chain alkylamines on both Lst and WTA structure and function and provides guidance for the application of Lst in harsh environments. Lysostaphin (Lst) effectively and selectively kills , the bacterial culprit of many hospital- and community-acquired skin and respiratory infections and food poisoning. Lst has been investigated in animal models and clinical trials, industrial formulations, and environmental settings. Here, we studied the mechanistic basis of the inhibitory effect of alkylamines, such as monoethanolamine (MEA), a widely used chemical in commercial detergents, on Lst activity, for the potential incorporation of Lst in disinfectant solutions. We have found that protonated MEA has little influence on Lst activity, while unprotonated MEA prevents Lst from binding to cells and hence dramatically decreases the enzyme's bacteriolytic efficacy. Following partial removal of the wall teichoic acid, an important component of the bacterial cell envelope, the inhibitory effect of unprotonated MEA on Lst is reduced. This phenomenon can be extended to other short-chain alkylamines. This mechanistic report of the impact of alkylamines on Lst functionality will help guide future applications of Lst in disinfection and decontamination of health-related commercial products.

摘要

溶葡萄球菌酶(Lst)是一种有效的溶菌酶,能够杀死金黄色葡萄球菌,这是一种常见的人类和动物细菌病原体。Lst 对浮游细胞和生物膜都具有高活性,因此有可能被用于工业产品,如商业清洁剂,以进行去污。然而,Lst 在单乙醇胺(MEA)存在下受到抑制,MEA 是一种广泛用于清洁剂和药物的化学物质,其抑制的潜在机制尚不清楚。在这项研究中,我们在不同 pH 值(7.5 至 10.5)的缓冲盐溶液中检查了 Lst 对 ATCC 6538 的细胞结合和杀伤能力,发现只有未质子化的 MEA 形式抑制了 Lst 与细胞表面的结合,导致 Lst 活性降低,尽管其二级结构得以保留。通过使用衣霉素处理来减少壁磷壁酸(WTA)的生物合成,可以在很大程度上恢复这种降低的酶活性,表明 Lst 活性的抑制取决于 WTA 的存在和数量。我们提出,Lst 的细胞结合和杀伤能力的降低与中性 MEA 对 WTA 构象的影响有关。通过其他短链烷基胺证实了类似的效果。这项研究为 Lst 在苛刻环境中的应用提供了新的见解,即短链烷基胺对 Lst 和 WTA 结构和功能的影响。溶葡萄球菌酶(Lst)能够有效且选择性地杀死金黄色葡萄球菌,这种细菌是许多医院和社区获得性皮肤和呼吸道感染以及食物中毒的罪魁祸首。Lst 已经在动物模型和临床试验、工业配方和环境设置中进行了研究。在这里,我们研究了烷基胺(如单乙醇胺(MEA))对 Lst 活性的抑制作用的机制基础,MEA 是商业清洁剂中广泛使用的一种化学物质,这可能将 Lst 纳入消毒剂溶液中。我们发现,质子化的 MEA 对 Lst 活性几乎没有影响,而未质子化的 MEA 阻止 Lst 与 细胞结合,从而大大降低了酶的溶菌效果。在部分去除细胞壁磷壁酸(一种细菌细胞外膜的重要组成部分)后,未质子化 MEA 对 Lst 的抑制作用降低。这种现象可以扩展到其他短链烷基胺。这项关于烷基胺对 Lst 功能影响的机制报告将有助于指导 Lst 在与健康相关的商业产品的消毒和去污中的未来应用。

相似文献

1
Unprotonated Short-Chain Alkylamines Inhibit Staphylolytic Activity of Lysostaphin in a Wall Teichoic Acid-Dependent Manner.
Appl Environ Microbiol. 2018 Jul 2;84(14). doi: 10.1128/AEM.00693-18. Print 2018 Jul 15.
2
Reducing Staphylococcus aureus resistance to lysostaphin using CRISPR-dCas9.
Biotechnol Bioeng. 2019 Dec;116(12):3149-3159. doi: 10.1002/bit.27143. Epub 2019 Sep 3.
3
[Influence of Polycations on Antibacterial Activity of Lysostaphin].
Prikl Biokhim Mikrobiol. 2015 Nov-Dec;51(6):610-5.
4
Flexible Peptide Linkers Enhance the Antimicrobial Activity of Surface-Immobilized Bacteriolytic Enzymes.
ACS Appl Mater Interfaces. 2018 Oct 31;10(43):36746-36756. doi: 10.1021/acsami.8b14411. Epub 2018 Oct 16.
7
Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus.
J Bacteriol. 2006 Apr;188(7):2463-72. doi: 10.1128/JB.188.7.2463-2472.2006.
8
Cell wall composition and decreased autolytic activity and lysostaphin susceptibility of glycopeptide-intermediate Staphylococcus aureus.
Antimicrob Agents Chemother. 2004 Oct;48(10):3749-57. doi: 10.1128/AAC.48.10.3749-3757.2004.
9
Deletion of hypothetical wall teichoic acid ligases in Staphylococcus aureus activates the cell wall stress response.
FEMS Microbiol Lett. 2012 Aug;333(2):109-20. doi: 10.1111/j.1574-6968.2012.02603.x. Epub 2012 Jun 18.

引用本文的文献

本文引用的文献

1
Biocatalytic Nanocomposites for Combating Bacterial Pathogens.
Annu Rev Chem Biomol Eng. 2017 Jun 7;8:87-113. doi: 10.1146/annurev-chembioeng-060816-101612.
2
Wall teichoic acids mediate increased virulence in Staphylococcus aureus.
Nat Microbiol. 2017 Jan 23;2:16257. doi: 10.1038/nmicrobiol.2016.257.
6
Evaluation of a lysostaphin-fusion protein as a dry-cow therapy for Staphylococcus aureus mastitis in dairy cattle.
J Dairy Sci. 2016 Jun;99(6):4638-4646. doi: 10.3168/jds.2015-10783. Epub 2016 Mar 31.
8
Bacteriophage endolysins: applications for food safety.
Curr Opin Biotechnol. 2016 Feb;37:76-87. doi: 10.1016/j.copbio.2015.10.005. Epub 2015 Dec 18.
9
Interactions between Polyelectrolyte Brushes and Hofmeister Ions: Chaotropes versus Kosmotropes.
Langmuir. 2015 Sep 29;31(38):10461-8. doi: 10.1021/acs.langmuir.5b02698. Epub 2015 Sep 21.
10
Wall Teichoic Acid Glycosylation Governs Staphylococcus aureus Nasal Colonization.
mBio. 2015 Jun 30;6(4):e00632. doi: 10.1128/mBio.00632-15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验