Suppr超能文献

Selective cortical infarction reduces [3H]sulpiride binding in rat caudate-putamen: autoradiographic evidence for presynaptic D2 receptors on corticostriate terminals.

作者信息

Filloux F, Liu T H, Hsu C Y, Hunt M A, Wamsley J K

机构信息

Department of Psychiatry, University of Utah School of Medicine, Salt Lake City 84132.

出版信息

Synapse. 1988;2(5):521-31. doi: 10.1002/syn.890020508.

Abstract

Although the existence of presynaptic D2 dopamine receptors on corticostriate terminals has been supported by numerous receptor-binding studies, recent autoradiographic data has failed to demonstrate loss of striatal D2 receptors following cortical lesions. In the present study, Long-Evans rats were subjected to unilateral middle cerebral artery (MCA) infarction in order to produce reproducible lesions of the neocortex without damaging subcortical structures. Animals were sacrificed 2 and 4 wk following lesion and brains were prepared for receptor autoradiography. D2 receptors were studied using the selective ligand [3H]sulpiride, while D1 dopamine receptors were examined using [3H]SCH 23390. Sodium-dependent, high-affinity choline uptake sites were labeled with [3H]hemicholinium-3, thereby providing a quantitative measure of cholinergic neuronal integrity. Unilateral cortical infarction resulted in approximately a 20% reduction in [3H]sulpiride binding in several discrete regions of the ipsilateral caudate-putamen (CPu), but not in the nucleus accumbens. D2 receptor binding was also reduced significantly in some areas of the contralateral CPu when compared with [3H]sulpiride binding in sham-operated, control animals. In contrast, D1 receptors (as identified by [3H]SCH 23390 and high-affinity choline uptake sites (labeled with [3H]-HC-3) were not affected by the cortical lesion. The results provide autoradiographic confirmation of the existence of presynaptic D2 receptors on corticostriate terminals.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验