Suppr超能文献

欧洲氮化物(NO)土地使用回归模型的发展:对当前和未来暴露评估的影响及其对政策分析的意义。

Development of European NO Land Use Regression Model for present and future exposure assessment: Implications for policy analysis.

机构信息

European Commission, Joint Research Centre JRC Directorate B - Growth and Innovation, Territorial Development Unit, Via Enrico Fermi 2749, TP 263, 21027, Ispra, (VA), Italy.

European Commission, Joint Research Centre JRC Directorate B - Growth and Innovation, Territorial Development Unit, Via Enrico Fermi 2749, TP 263, 21027, Ispra, (VA), Italy.

出版信息

Environ Pollut. 2018 Sep;240:140-154. doi: 10.1016/j.envpol.2018.03.075. Epub 2018 May 4.

Abstract

A new Land Use Regression model was built to develop pan-European 100 m resolution maps of NO concentrations. The model was built using NO concentrations from routine monitoring stations available in the Airbase database as dependent variable. Predictor variables included land use, road traffic proxies, population density, climatic and topographical variables, and distance to sea. In order to capture international and inter regional disparities not accounted for with the mentioned predictor variables, additional proxies of NO concentrations, like levels of activity intensity and NO emissions for specific sectors, were also included. The model was built using Random Forest techniques. Model performance was relatively good given the EU-wide scale (R = 0.53). Output predictions of annual average concentrations of NO were in line with other existing models in terms of spatial distribution and values of concentration. The model was validated for year 2015, comparing model predictions derived from updated values of independent variables, with concentrations in monitoring stations for that year. The algorithm was then used to model future concentrations up to the year 2030, considering different emission scenarios as well as changes in land use, population distribution and economic factors assuming the most likely socio-economic trends. Levels of exposure were derived from maps of concentration. The model proved to be a useful tool for the ex-ante evaluation of specific air pollution mitigation measures, and more broadly, for impact assessment of EU policies on territorial development.

摘要

建立了一个新的土地利用回归模型,以开发全欧洲 100 米分辨率的 NO 浓度地图。该模型使用 Airbase 数据库中常规监测站的 NO 浓度作为因变量进行构建。预测变量包括土地利用、道路交通指标、人口密度、气候和地形变量以及与海洋的距离。为了捕捉未被上述预测变量解释的国际和区域间差异,还包括了特定部门的活动强度和 NO 排放等其他 NO 浓度指标。该模型使用随机森林技术进行构建。考虑到整个欧盟的规模,该模型的性能相对较好(R=0.53)。NO 年平均浓度的输出预测在空间分布和浓度值方面与其他现有模型一致。该模型针对 2015 年进行了验证,将基于更新后的自变量值的模型预测与当年监测站的浓度进行了比较。然后,该算法被用于模拟到 2030 年的未来浓度,同时考虑了不同的排放情景以及土地利用、人口分布和经济因素的变化,假设最有可能的社会经济趋势。暴露水平是从浓度图中得出的。该模型被证明是评估特定空气污染缓解措施的有用工具,更广泛地说,也是评估欧盟政策对领土发展影响的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验