Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA.
Nat Nanotechnol. 2018 Aug;13(8):723-729. doi: 10.1038/s41565-018-0130-2. Epub 2018 May 7.
Dynamic DNA nanotechnology has yielded nontrivial autonomous behaviours such as stimulus-guided locomotion, computation and programmable molecular assembly. Despite these successes, DNA-based nanomachines suffer from slow kinetics, requiring several minutes or longer to carry out a handful of operations. Here, we pursue the speed limit of an important class of reactions in DNA nanotechnology-toehold exchange-through the single-molecule optimization of a novel class of DNA walker that undergoes cartwheeling movements over a field of complementary oligonucleotides. After optimizing this DNA 'acrobat' for rapid movement, we measure a stepping rate constant approaching 1 s, which is 10- to 100-fold faster than prior DNA walkers. Finally, we use single-particle tracking to demonstrate movement of the walker over hundreds of nanometres within 10 min, in quantitative agreement with predictions from stepping kinetics. These results suggest that substantial improvements in the operating rates of broad classes of DNA nanomachines utilizing strand displacement are possible.
动态 DNA 纳米技术产生了一些非平凡的自主行为,如刺激引导的运动、计算和可编程分子组装。尽管取得了这些成功,但基于 DNA 的纳米机器的动力学较慢,需要几分钟或更长时间才能执行少数操作。在这里,我们通过对一种新型 DNA 步行者的单分子优化来探索 DNA 纳米技术中一类重要反应——榫卯交换的速度极限,该步行者在互补寡核苷酸场地上进行侧翻运动。在对这种 DNA“杂技演员”进行快速运动的优化后,我们测量到的步移速率常数接近 1 s,比以前的 DNA 步行者快 10 到 100 倍。最后,我们使用单粒子跟踪来证明在 10 分钟内,步行者在数百纳米范围内的运动,与从步移动力学预测的结果定量一致。这些结果表明,利用链置换的广泛的 DNA 纳米机器的操作速率有可能得到实质性的提高。