Ogieva Mathew O, Pfeifer Wolfgang G, Sensale Sebastian
Department of Physics, Cleveland State University, Cleveland, OH, 44115, USA.
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
Sci Rep. 2025 Mar 19;15(1):9450. doi: 10.1038/s41598-025-93269-x.
Over the past two decades, dynamic DNA origami structures have emerged as promising candidates for nanoscale signal and cargo transport. DNA walkers, programmable nanostructures that traverse tracks made of DNA, represent a key innovation in this field, enabling controlled and directional movement at the nanoscale. Despite relatively fast diffusion rates, the speed of DNA walkers remains constrained by the reaction-limited nature of strand exchange mechanisms, which depend both on the foothold-walker affinity and on the probability of the molecules being found close enough to bind. In this study, we explore how spatial confinement can expedite walker motion and evaluate two strategies to achieve this: the introduction of tailed DNA footholds, promoting pseudo-rotational dynamics, and the addition of walls along the DNA track, promoting pseudo-curvilinear dynamics. Using simulations and stochastic theories, we demonstrate that, by reducing the sampling of conformations far from the binding sites, tailed footholds provide the best speed enhancement, achieving a fourfold increase in speed. Trench-like confinement yields a more modest threefold increase, what, while significant, requires extensive structural modifications to the DNA track, limiting design flexibility and reducing cost-efficiency in comparison to the tailed footholds. The combination of tailed footholds and trench-like confinement turns the walker-foothold system bistable, with two distinct stable states separated by an energy barrier. By focusing on the properties of the DNA track, this study offers novel insights into leveraging soft structural motifs to optimize signal propagation rates, with implications for sensing, robotics and molecular computing in reaction-diffusion systems.
在过去二十年中,动态DNA折纸结构已成为纳米级信号和货物运输的有前景的候选者。DNA步行器是一种可编程的纳米结构,可穿过由DNA制成的轨道,是该领域的一项关键创新,能够在纳米级实现可控的定向运动。尽管扩散速率相对较快,但DNA步行器的速度仍然受到链交换机制的反应限制性质的制约,这既取决于立足点 - 步行器的亲和力,也取决于分子被发现足够接近以结合的概率。在这项研究中,我们探索空间限制如何加速步行器的运动,并评估实现这一目标的两种策略:引入带尾的DNA立足点,促进伪旋转动力学,以及沿着DNA轨道添加壁,促进伪曲线动力学。使用模拟和随机理论,我们证明,通过减少远离结合位点的构象采样,带尾的立足点提供了最佳的速度提升,速度提高了四倍。类似沟槽的限制使速度适度提高了三倍,虽然这很显著,但需要对DNA轨道进行广泛的结构修改,与带尾的立足点相比,这限制了设计灵活性并降低了成本效益。带尾的立足点和类似沟槽的限制相结合,使步行器 - 立足点系统成为双稳态,具有由能量势垒分隔的两个不同的稳定状态。通过关注DNA轨道的特性,这项研究为利用软结构基序优化反应扩散系统中的信号传播速率提供了新的见解,对传感、机器人技术和分子计算具有重要意义。