Suppr超能文献

基于微载体的生物反应器中培养扩增的人骨髓间充质干细胞的聚集

Aggregation of Culture Expanded Human Mesenchymal Stem Cells in Microcarrier-based Bioreactor.

作者信息

Yuan Xuegang, Tsai Ang-Chen, Farrance Iain, Rowley Jon, Ma Teng

机构信息

Department of Chemical and Biomedical Engineering, Florida State University, 2525 Pottsdamer St., Tallahassee, FL 32310, USA.

RoosterBio Inc., 4539 Metropolitan Court, Frederick, MD 21704.

出版信息

Biochem Eng J. 2018 Mar 15;131:39-46. doi: 10.1016/j.bej.2017.12.011. Epub 2017 Dec 13.

Abstract

Three-dimensional aggregation of human mesenchymal stem cells (hMSCs) has been used to enhance their therapeutic properties but current fabrication protocols depend on laboratory methods and are not scalable. In this study, we developed thermal responsive poly(N-isopropylacrylamide) grafted microcarriers (PNIPAM-MCs), which supported expansion and thermal detachment of hMSCs at reduced temperature (23.0 °C). hMSCs were cultured on the PNIPAM-MCs in both spinner flask (SF) and PBS Vertical-Wheel (PBS-VW) bioreactors for expansion. At room temperature, hMSCs were detached as small cell sheets, which subsequently self-assembled into 3D hMSC aggregates in PBS-VW bioreactor and remain as single cells in SF bioreactor owing to different hydrodynamic conditions. hMSC aggregates generated from the bioreactor maintained comparable immunomodulation and cytokine secretion properties compared to the ones made from the AggreWell. The results of the current study demonstrate the feasibility of scale-up production of hMSC aggregates in the suspension bioreactor using thermal responsive microcarriers for integrated cell expansion and 3D aggregation in a close bioreactor system and highlight the critical role of hydrodynamics in self-assembly of detached hMSC in suspension.

摘要

人间充质干细胞(hMSCs)的三维聚集已被用于增强其治疗特性,但目前的制备方案依赖于实验室方法,且无法扩大规模。在本研究中,我们开发了热响应性聚(N-异丙基丙烯酰胺)接枝微载体(PNIPAM-MCs),其支持hMSCs在低温(23.0°C)下的扩增和热脱离。hMSCs在旋转瓶(SF)和PBS垂直轮(PBS-VW)生物反应器中的PNIPAM-MCs上进行培养以实现扩增。在室温下,hMSCs以小细胞片的形式脱离,随后在PBS-VW生物反应器中自组装成三维hMSC聚集体,而由于不同的流体动力学条件,在SF生物反应器中仍保持为单细胞。与由AggreWell制备的hMSC聚集体相比,生物反应器产生的hMSC聚集体保持了相当的免疫调节和细胞因子分泌特性。本研究结果证明了在悬浮生物反应器中使用热响应性微载体扩大hMSC聚集体生产规模的可行性,可在封闭的生物反应器系统中实现细胞的整合扩增和三维聚集,并突出了流体动力学在悬浮状态下脱离的hMSC自组装中的关键作用。

相似文献

1
Aggregation of Culture Expanded Human Mesenchymal Stem Cells in Microcarrier-based Bioreactor.
Biochem Eng J. 2018 Mar 15;131:39-46. doi: 10.1016/j.bej.2017.12.011. Epub 2017 Dec 13.
3
Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor.
Methods Mol Biol. 2016;1502:77-86. doi: 10.1007/7651_2016_338.
4
Agitation in a Microcarrier-based Spinner Flask Bioreactor Modulates Homeostasis of Human Mesenchymal Stem Cells.
Biochem Eng J. 2021 Apr;168. doi: 10.1016/j.bej.2021.107947. Epub 2021 Jan 27.
5
Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion.
Tissue Eng Part C Methods. 2020 May;26(5):263-275. doi: 10.1089/ten.TEC.2020.0039. Epub 2020 May 11.
6
7
Influence of Microenvironment on Mesenchymal Stem Cell Therapeutic Potency: From Planar Culture to Microcarriers.
Front Bioeng Biotechnol. 2020 Jun 24;8:640. doi: 10.3389/fbioe.2020.00640. eCollection 2020.
8
Expansion of human mesenchymal stem cells on poly(vinyl alcohol) microcarriers.
J Biosci Bioeng. 2023 Nov;136(5):407-414. doi: 10.1016/j.jbiosc.2023.08.003. Epub 2023 Aug 30.
10
Scalable manufacturing of gene-modified human mesenchymal stromal cells with microcarriers in spinner flasks.
Appl Microbiol Biotechnol. 2023 Sep;107(18):5669-5685. doi: 10.1007/s00253-023-12634-w. Epub 2023 Jul 20.

引用本文的文献

1
Scalable, High-Density Expansion of Human Mesenchymal Stem Cells on Microcarriers Using the Bach Impeller in Stirred-Tank Reactors.
Biotechnol Bioeng. 2025 Oct;122(10):2803-2818. doi: 10.1002/bit.70025. Epub 2025 Jul 17.
2
Thermoresponsive BrushGel Microcarriers for Efficient Cell Expansion and Enzyme-Reduced Harvesting.
Adv Healthc Mater. 2025 Sep;14(23):e2404538. doi: 10.1002/adhm.202404538. Epub 2025 Jul 14.
3
Preclinical Research of Stem Cells: Challenges and Progress.
Stem Cell Rev Rep. 2023 Aug;19(6):1676-1690. doi: 10.1007/s12015-023-10528-y. Epub 2023 Apr 25.
4
Engineering Human Mesenchymal Bodies in a Novel 3D-Printed Microchannel Bioreactor for Extracellular Vesicle Biogenesis.
Bioengineering (Basel). 2022 Dec 13;9(12):795. doi: 10.3390/bioengineering9120795.
5
Multinuclear MRI Reveals Early Efficacy of Stem Cell Therapy in Stroke.
Transl Stroke Res. 2023 Aug;14(4):545-561. doi: 10.1007/s12975-022-01057-w. Epub 2022 Jul 28.
6
Development of a novel feeding regime for large scale production of human umbilical cord mesenchymal stem/stromal cells.
Cytotechnology. 2022 Jun;74(3):351-369. doi: 10.1007/s10616-022-00523-5. Epub 2022 Mar 10.
7
Bioengineering Outlook on Cultivated Meat Production.
Micromachines (Basel). 2022 Feb 28;13(3):402. doi: 10.3390/mi13030402.
8
Extended Ischemic Recovery After Implantation of Human Mesenchymal Stem Cell Aggregates Indicated by Sodium MRI at 21.1 T.
Transl Stroke Res. 2022 Aug;13(4):543-555. doi: 10.1007/s12975-021-00976-4. Epub 2022 Feb 7.
9
Bioprocessing of Human Mesenchymal Stem Cells: From Planar Culture to Microcarrier-Based Bioreactors.
Bioengineering (Basel). 2021 Jul 7;8(7):96. doi: 10.3390/bioengineering8070096.
10
Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models.
Int J Pharm. 2021 Sep 25;607:120943. doi: 10.1016/j.ijpharm.2021.120943. Epub 2021 Jul 27.

本文引用的文献

1
Aggregation kinetics of human mesenchymal stem cells under wave motion.
Biotechnol J. 2017 May;12(5). doi: 10.1002/biot.201600448. Epub 2017 Jan 26.
2
Metabolic Reconfiguration Supports Reacquisition of Primitive Phenotype in Human Mesenchymal Stem Cell Aggregates.
Stem Cells. 2017 Feb;35(2):398-410. doi: 10.1002/stem.2510. Epub 2016 Oct 26.
3
Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells.
J Biotechnol. 2016 Oct 20;236:88-109. doi: 10.1016/j.jbiotec.2016.08.007. Epub 2016 Aug 12.
6
Increased Paracrine Immunomodulatory Potential of Mesenchymal Stromal Cells in Three-Dimensional Culture.
Tissue Eng Part B Rev. 2016 Aug;22(4):322-9. doi: 10.1089/ten.TEB.2015.0532. Epub 2016 Mar 16.
8
Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate.
Tissue Eng Part A. 2015 May;21(9-10):1705-19. doi: 10.1089/ten.TEA.2014.0314. Epub 2015 Mar 20.
10
In vitro characterization of scaffold-free three-dimensional mesenchymal stem cell aggregates.
Cell Tissue Res. 2014 Nov;358(2):395-405. doi: 10.1007/s00441-014-1939-0. Epub 2014 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验