Goto Hayato, Lin Zhirong, Nakamura Yasunobu
Frontier Research Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582, Japan.
RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan.
Sci Rep. 2018 May 8;8(1):7154. doi: 10.1038/s41598-018-25492-8.
A network of Kerr-nonlinear parametric oscillators without dissipation has recently been proposed for solving combinatorial optimization problems via quantum adiabatic evolution through its bifurcation point. Here we investigate the behavior of the quantum bifurcation machine (QbM) in the presence of dissipation. Our numerical study suggests that the output probability distribution of the dissipative QbM is Boltzmann-like, where the energy in the Boltzmann distribution corresponds to the cost function of the optimization problem. We explain the Boltzmann distribution by generalizing the concept of quantum heating in a single nonlinear oscillator to the case of multiple coupled nonlinear oscillators. The present result also suggests that such driven dissipative nonlinear oscillator networks can be applied to Boltzmann sampling, which is used, e.g., for Boltzmann machine learning in the field of artificial intelligence.
最近有人提出了一个无耗散的克尔非线性参量振荡器网络,用于通过量子绝热演化经过其分岔点来解决组合优化问题。在此,我们研究存在耗散情况下量子分岔机器(QbM)的行为。我们的数值研究表明,耗散QbM的输出概率分布类似玻尔兹曼分布,其中玻尔兹曼分布中的能量对应于优化问题的成本函数。我们通过将单个非线性振荡器中的量子加热概念推广到多个耦合非线性振荡器的情况来解释玻尔兹曼分布。目前的结果还表明,这种受驱动的耗散非线性振荡器网络可应用于玻尔兹曼采样,例如在人工智能领域用于玻尔兹曼机器学习。