Suppr超能文献

双层厚度和曲率对 pHLIP 肽结合和插入的影响。

Bilayer Thickness and Curvature Influence Binding and Insertion of a pHLIP Peptide.

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.

Physics Department, University of Rhode Island, Kingston, Rhode Island.

出版信息

Biophys J. 2018 May 8;114(9):2107-2115. doi: 10.1016/j.bpj.2018.03.036.

Abstract

The physical properties of lipid bilayers, such as curvature and fluidity, can affect the interactions of polypeptides with membranes, influencing biological events. Additionally, given the growing interest in peptide-based therapeutics, understanding the influence of membrane properties on membrane-associated peptides has potential utility. pH low insertion peptides (pHLIPs) are a family of water-soluble peptides that can insert across cell membranes in a pH-dependent manner, enabling the use of pH to follow peptide-lipid interactions. Here we study pHLIP interactions with liposomes varying in size and composition, to determine the influence of several key membrane physical properties. We find that pHLIP binding to bilayer surfaces at neutral pH is governed by the ease of access to the membrane's hydrophobic core, which can be facilitated by membrane curvature, thickness, and the cholesterol content of the membrane. After surface binding, if the pH is lowered, the kinetics of pHLIP folding to form a helix and subsequent insertion across the membrane depends on the fluidity and energetic dynamics of the membrane. We showed that pHLIP is capable of forming a helix across lipid bilayers of different thicknesses at low pH. However, the kinetics of the slow phase of insertion corresponding to the translocation of C-terminal end of the peptide across lipid bilayer, vary approximately twofold, and correlate with bilayer thickness and fluidity. Although these influences are not large, local curvature variations in membranes of different fluidity could selectively influence surface binding in mixed cell populations.

摘要

脂质双层的物理性质,如曲率和流动性,可以影响多肽与膜的相互作用,从而影响生物事件。此外,鉴于人们对基于肽的治疗方法越来越感兴趣,了解膜性质对膜相关肽的影响具有潜在的用途。pH 低插入肽(pHLIP)是一类水溶性肽,能够以 pH 依赖性的方式插入细胞膜,从而可以利用 pH 来跟踪肽-脂相互作用。在这里,我们研究了 pHLIP 与不同大小和组成的脂质体的相互作用,以确定几个关键的膜物理性质的影响。我们发现,pHLIP 在中性 pH 下与双层表面的结合受进入膜疏水核心难易程度的控制,而膜曲率、厚度和膜中的胆固醇含量可以促进这种结合。在表面结合后,如果 pH 降低,pHLIP 折叠形成螺旋并随后插入膜的动力学取决于膜的流动性和能量动力学。我们表明,pHLIP 能够在低 pH 下形成穿过不同厚度脂质双层的螺旋。然而,对应于肽的 C 末端穿过脂质双层易位的慢相插入的动力学大约变化两倍,并且与双层厚度和流动性相关。尽管这些影响不大,但不同流动性的膜中的局部曲率变化可能会选择性地影响混合细胞群体中的表面结合。

相似文献

1
Bilayer Thickness and Curvature Influence Binding and Insertion of a pHLIP Peptide.
Biophys J. 2018 May 8;114(9):2107-2115. doi: 10.1016/j.bpj.2018.03.036.
2
Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane.
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15340-5. doi: 10.1073/pnas.0804746105. Epub 2008 Sep 30.
3
Membrane-Induced p K Shifts in wt-pHLIP and Its L16H Variant.
J Chem Theory Comput. 2018 Jun 12;14(6):3289-3297. doi: 10.1021/acs.jctc.8b00102. Epub 2018 May 17.
4
Modulation of the pHLIP transmembrane helix insertion pathway.
Biophys J. 2012 Apr 18;102(8):1846-55. doi: 10.1016/j.bpj.2012.03.021.
5
The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition.
J Mol Biol. 2002 Jun 7;319(3):839-53. doi: 10.1016/S0022-2836(02)00342-X.
6
Membrane binding and insertion of a pHLIP peptide studied by all-atom molecular dynamics simulations.
Int J Mol Sci. 2013 Jul 12;14(7):14532-49. doi: 10.3390/ijms140714532.
7
Comparison of lipid-dependent bilayer insertion of pHLIP and its P20G variant.
Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):534-543. doi: 10.1016/j.bbamem.2017.11.006. Epub 2017 Nov 11.
8
Kinetics of pHLIP peptide insertion into and exit from a membrane.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12095-12100. doi: 10.1073/pnas.1917857117. Epub 2020 May 14.
9
Roles of carboxyl groups in the transmembrane insertion of peptides.
J Mol Biol. 2011 Oct 21;413(2):359-71. doi: 10.1016/j.jmb.2011.08.010. Epub 2011 Aug 23.
10
Membrane physical properties influence transmembrane helix formation.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14422-7. doi: 10.1073/pnas.1212665109. Epub 2012 Aug 20.

引用本文的文献

1
Improved acid-driven inhibition of effector T cell function by a pHLIP variant-conjugated PD-L1.
Sci Rep. 2025 Apr 18;15(1):13422. doi: 10.1038/s41598-025-98135-4.
2
Aiming the magic bullet: targeted delivery of imaging and therapeutic agents to solid tumors by pHLIP peptides.
Front Pharmacol. 2024 Mar 13;15:1355893. doi: 10.3389/fphar.2024.1355893. eCollection 2024.
3
Heterotypic Interactions between the 40- and 42-Residue Isoforms of β-Amyloid Peptides on Lipid Bilayer Surfaces.
ACS Chem Neurosci. 2023 Dec 6;14(23):4153-4162. doi: 10.1021/acschemneuro.3c00523. Epub 2023 Nov 22.
4
pHLIP Peptides Target Acidity in Activated Macrophages.
Mol Imaging Biol. 2022 Dec;24(6):874-885. doi: 10.1007/s11307-022-01737-x. Epub 2022 May 23.
5
Roles of key residues and lipid dynamics reveal pHLIP-membrane interactions at intermediate pH.
Biophys J. 2021 Nov 2;120(21):4649-4662. doi: 10.1016/j.bpj.2021.10.001. Epub 2021 Oct 6.
7
pH-triggered pore-forming peptides with strong composition-dependent membrane selectivity.
Biophys J. 2021 Feb 16;120(4):618-630. doi: 10.1016/j.bpj.2021.01.010. Epub 2021 Jan 16.
8
The importance of the membrane for biophysical measurements.
Nat Chem Biol. 2020 Dec;16(12):1285-1292. doi: 10.1038/s41589-020-0574-1. Epub 2020 Nov 16.
9
A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides.
Front Cell Infect Microbiol. 2020 Oct 19;10:540898. doi: 10.3389/fcimb.2020.540898. eCollection 2020.
10
Using Simulation to Understand the Role of Titration on the Stability of a Peptide-Lipid Bilayer Complex.
Langmuir. 2020 Oct 20;36(41):12272-12280. doi: 10.1021/acs.langmuir.0c02038. Epub 2020 Oct 7.

本文引用的文献

1
High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review.
Cell Biochem Biophys. 2017 Dec;75(3-4):369-385. doi: 10.1007/s12013-017-0792-7. Epub 2017 Apr 17.
2
Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers.
Acc Chem Res. 2016 Feb 16;49(2):184-92. doi: 10.1021/acs.accounts.5b00346. Epub 2016 Jan 12.
3
pHLIP-FIRE, a cell insertion-triggered fluorescent probe for imaging tumors demonstrates targeted cargo delivery in vivo.
ACS Chem Biol. 2014 Nov 21;9(11):2545-53. doi: 10.1021/cb500388m. Epub 2014 Sep 10.
4
Understanding the pharmacological properties of a metabolic PET tracer in prostate cancer.
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7254-9. doi: 10.1073/pnas.1405240111. Epub 2014 May 1.
5
Targeting pancreatic ductal adenocarcinoma acidic microenvironment.
Sci Rep. 2014 Mar 19;4:4410. doi: 10.1038/srep04410.
6
pH (low) insertion peptide (pHLIP) targets ischemic myocardium.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):82-6. doi: 10.1073/pnas.1220038110. Epub 2012 Dec 17.
7
Membrane physical properties influence transmembrane helix formation.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14422-7. doi: 10.1073/pnas.1212665109. Epub 2012 Aug 20.
8
Modulation of the pHLIP transmembrane helix insertion pathway.
Biophys J. 2012 Apr 18;102(8):1846-55. doi: 10.1016/j.bpj.2012.03.021.
9
In vivo pH imaging with (99m)Tc-pHLIP.
Mol Imaging Biol. 2012 Dec;14(6):725-34. doi: 10.1007/s11307-012-0549-z.
10
Progress in understanding the role of lipids in membrane protein folding.
Biochim Biophys Acta. 2012 Apr;1818(4):951-6. doi: 10.1016/j.bbamem.2011.12.029. Epub 2012 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验