Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales, Australia.
Nature. 2018 May;557(7705):439-445. doi: 10.1038/s41586-018-0110-6. Epub 2018 May 9.
In vertebrate hearts, the ventricular trabecular myocardium develops as a sponge-like network of cardiomyocytes that is critical for contraction and conduction, ventricular septation, papillary muscle formation and wall thickening through the process of compaction . Defective trabeculation leads to embryonic lethality or non-compaction cardiomyopathy (NCC) . There are divergent views on when and how trabeculation is initiated in different species. In zebrafish, trabecular cardiomyocytes extrude from compact myocardium , whereas in chicks, chamber wall thickening occurs before overt trabeculation . In mice, the onset of trabeculation has not been described, but is proposed to begin at embryonic day 9.0, when cardiomyocytes form radially oriented ribs . Endocardium-myocardium communication is essential for trabeculation, and numerous signalling pathways have been identified, including Notch and Neuregulin (NRG) . Late disruption of the Notch pathway causes NCC . Whereas it has been shown that mutations in the extracellular matrix (ECM) genes Has2 and Vcan prevent the formation of trabeculae in mice and the matrix metalloprotease ADAMTS1 promotes trabecular termination , the pathways involved in ECM dynamics and the molecular regulation of trabeculation during its early phases remain unexplored. Here we present a model of trabeculation in mice that integrates dynamic endocardial and myocardial cell behaviours and ECM remodelling, and reveal new epistatic relationships between the involved signalling pathways. NOTCH1 signalling promotes ECM degradation during the formation of endocardial projections that are critical for individualization of trabecular units, whereas NRG1 promotes myocardial ECM synthesis, which is necessary for trabecular rearrangement and growth. These systems interconnect through NRG1 control of Vegfa, but act antagonistically to establish trabecular architecture. These insights enabled the prediction of persistent ECM and cardiomyocyte growth in a mouse NCC model, providing new insights into the pathophysiology of congenital heart disease.
在脊椎动物心脏中,心室小梁心肌发育为海绵状的心肌细胞网络,对于收缩和传导、室间隔形成、乳头肌形成和通过致密化过程的壁增厚至关重要。小梁发育不良导致胚胎致死或非致密化心肌病(NCC)。不同物种中小梁开始的时间和方式存在不同的观点。在斑马鱼中,小梁心肌细胞从致密心肌中伸出,而在小鸡中,室壁增厚先于明显的小梁形成。在小鼠中,尚未描述小梁形成的开始时间,但据推测在胚胎第 9.0 天开始,此时心肌细胞形成放射状的肋。心内膜-心肌通讯对于小梁形成至关重要,已经确定了许多信号通路,包括 Notch 和 Neuregulin (NRG)。 Notch 通路的晚期中断会导致 NCC。虽然已经表明,细胞外基质(ECM)基因 Has2 和 Vcan 的突变可防止小鼠中小梁的形成,并且基质金属蛋白酶 ADAMTS1 促进小梁的终止,但 ECM 动力学和早期小梁形成的分子调控中涉及的途径仍未被探索。在这里,我们提出了一个小鼠小梁形成模型,该模型整合了动态心内膜和心肌细胞行为以及 ECM 重塑,并揭示了涉及信号通路之间的新上位关系。NOTCH1 信号在对于小梁单位个体化至关重要的心内膜突起形成期间促进 ECM 降解,而 NRG1 促进心肌 ECM 合成,这对于小梁重排和生长是必需的。这些系统通过 NRG1 对 Vegfa 的控制相互连接,但为了建立小梁结构而拮抗作用。这些见解使我们能够预测小鼠 NCC 模型中持续的 ECM 和心肌细胞生长,为先天性心脏病的病理生理学提供了新的见解。