Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.
Nature. 2020 Dec;588(7836):130-134. doi: 10.1038/s41586-020-2946-9. Epub 2020 Nov 18.
How diverse cell fates and complex forms emerge and feed back to each other to sculpt functional organs remains unclear. In the developing heart, the myocardium transitions from a simple epithelium to an intricate tissue that consists of distinct layers: the outer compact and inner trabecular layers. Defects in this process, which is known as cardiac trabeculation, cause cardiomyopathies and embryonic lethality, yet how tissue symmetry is broken to specify trabecular cardiomyocytes is unknown. Here we show that local tension heterogeneity drives organ-scale patterning and cell-fate decisions during cardiac trabeculation in zebrafish. Proliferation-induced cellular crowding at the tissue scale triggers tension heterogeneity among cardiomyocytes of the compact layer and drives those with higher contractility to delaminate and seed the trabecular layer. Experimentally, increasing crowding within the compact layer cardiomyocytes augments delamination, whereas decreasing it abrogates delamination. Using genetic mosaics in trabeculation-deficient zebrafish models-that is, in the absence of critical upstream signals such as Nrg-Erbb2 or blood flow-we find that inducing actomyosin contractility rescues cardiomyocyte delamination and is sufficient to drive cardiomyocyte fate specification, as assessed by Notch reporter expression in compact layer cardiomyocytes. Furthermore, Notch signalling perturbs the actomyosin machinery in cardiomyocytes to restrict excessive delamination, thereby preserving the architecture of the myocardial wall. Thus, tissue-scale forces converge on local cellular mechanics to generate complex forms and modulate cell-fate choices, and these multiscale regulatory interactions ensure robust self-organized organ patterning.
细胞命运的多样性和复杂形态是如何出现的,以及它们如何相互反馈来塑造功能器官,目前仍不清楚。在心脏发育过程中,心肌从简单的上皮组织转变为由不同层组成的复杂组织:外层致密层和内层小梁层。这个过程称为心脏小梁化,如果出现缺陷,会导致心肌病和胚胎致死,但组织对称性是如何被打破以指定小梁心肌细胞尚不清楚。在这里,我们展示了局部张力异质性如何在斑马鱼心脏小梁化过程中驱动器官尺度模式形成和细胞命运决定。在组织尺度上,增殖诱导的细胞拥挤会在致密层心肌细胞中引发张力异质性,并促使那些收缩力较高的细胞离析并形成小梁层。实验上,增加致密层心肌细胞内的拥挤会增加离析,而减少拥挤则会阻止离析。在小梁化缺陷的斑马鱼模型(即缺乏关键的上游信号,如 Nrg-Erbb2 或血流)中使用遗传嵌合体,我们发现诱导肌动球蛋白收缩力可挽救心肌细胞离析,并足以驱动心肌细胞命运特化,这可通过 Notch 报告基因在致密层心肌细胞中的表达来评估。此外,Notch 信号会干扰心肌细胞中的肌动球蛋白机制,以限制过度离析,从而保持心肌壁的结构。因此,组织尺度的力集中在局部细胞力学上,以产生复杂形态并调节细胞命运选择,这些多尺度调节相互作用确保了强大的自组织器官模式形成。