From the Department of Biochemistry and Molecular Biology.
Hollings Cancer Center, and.
J Biol Chem. 2018 Jun 22;293(25):9784-9800. doi: 10.1074/jbc.RA118.003506. Epub 2018 May 10.
Telomerase activation protects cells from telomere damage by delaying senescence and inducing cell immortalization, whereas telomerase inhibition mediates rapid senescence or apoptosis. However, the cellular mechanisms that determine telomere damage-dependent senescence apoptosis induction are largely unknown. Here, we demonstrate that telomerase instability mediated by silencing of sphingosine kinase 2 (SPHK2) and sphingosine 1-phosphate (S1P), which binds and stabilizes telomerase, induces telomere damage-dependent caspase-3 activation and apoptosis, but not senescence, in p16-deficient lung cancer cells or tumors. These outcomes were prevented by knockdown of a tumor-suppressor protein, transcription factor 21 (TCF21), or by ectopic expression of WT human telomerase reverse transcriptase (hTERT) but not mutant hTERT with altered S1P binding. Interestingly, SphK2-deficient mice exhibited accelerated aging and telomerase instability that increased telomere damage and senescence via p16 activation especially in testes tissues, but not in apoptosis. Moreover, p16 silencing in SphK2 mouse embryonic fibroblasts activated caspase-3 and apoptosis without inducing senescence. Furthermore, ectopic WT p16 expression in p16-deficient A549 lung cancer cells prevented TCF21 and caspase-3 activation and resulted in senescence in response to SphK2/S1P inhibition and telomere damage. Mechanistically, a p16 mutant with impaired caspase-3 association did not prevent telomere damage-induced apoptosis, indicating that an association between p16 and caspase-3 proteins forces senescence induction by inhibiting caspase-3 activation and apoptosis. These results suggest that p16 plays a direct role in telomere damage-dependent senescence by limiting apoptosis via binding to caspase-3, revealing a direct link between telomere damage-dependent senescence and apoptosis with regards to aging and cancer.
端粒酶激活通过延迟衰老和诱导细胞永生化来保护细胞免受端粒损伤,而端粒酶抑制则介导快速衰老或细胞凋亡。然而,决定端粒损伤依赖性衰老和凋亡诱导的细胞机制在很大程度上尚不清楚。在这里,我们证明了通过沉默鞘氨醇激酶 2(SPHK2)和鞘氨醇 1-磷酸(S1P)来介导的端粒酶不稳定性,SPHK2 和 S1P 结合并稳定端粒酶,可诱导端粒损伤依赖性半胱天冬酶-3 激活和凋亡,但不会导致 p16 缺陷型肺癌细胞或肿瘤发生衰老。这些结果可以通过敲低肿瘤抑制蛋白转录因子 21(TCF21)或过表达 WT 人端粒酶逆转录酶(hTERT)来预防,但不能通过改变 S1P 结合的突变型 hTERT 来预防。有趣的是,SphK2 缺陷型小鼠表现出加速衰老和端粒酶不稳定性,这通过 p16 激活增加了端粒损伤和衰老,尤其是在睾丸组织中,但不会增加凋亡。此外,在 SphK2 小鼠胚胎成纤维细胞中沉默 p16 可激活半胱天冬酶-3 和凋亡,而不会诱导衰老。此外,在 p16 缺陷型 A549 肺癌细胞中外源表达 WT p16 可防止 TCF21 和半胱天冬酶-3 的激活,并导致 SphK2/S1P 抑制和端粒损伤时发生衰老。从机制上讲,与半胱天冬酶-3 结合受损的 p16 突变体不能阻止端粒损伤诱导的凋亡,这表明 p16 和半胱天冬酶-3 蛋白之间的关联通过抑制半胱天冬酶-3 的激活和凋亡来强制诱导衰老。这些结果表明,p16 通过与半胱天冬酶-3 结合限制凋亡,在端粒损伤依赖性衰老中发挥直接作用,揭示了衰老和癌症中与端粒损伤依赖性衰老和凋亡之间的直接联系。