From the Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
the Department of Neurology, RWTH University Aachen, D-52074 Aachen, Germany.
J Biol Chem. 2018 Jul 6;293(27):10826-10840. doi: 10.1074/jbc.RA117.000378. Epub 2018 May 11.
Transcellular propagation of protein aggregate "seeds" has been proposed to mediate the progression of neurodegenerative diseases in tauopathies and α-synucleinopathies. We previously reported that tau and α-synuclein aggregates bind heparan sulfate proteoglycans (HSPGs) on the cell surface, promoting cellular uptake and intracellular seeding. However, the specificity and binding mode of these protein aggregates to HSPGs remain unknown. Here, we measured direct interaction with modified heparins to determine the size and sulfation requirements for tau, α-synuclein, and β-amyloid (Aβ) aggregate binding to glycosaminoglycans (GAGs). Varying the GAG length and sulfation patterns, we next conducted competition studies with heparin derivatives in cell-based assays. Tau aggregates required a precise GAG architecture with defined sulfate moieties in the - and 6--positions, whereas the binding of α-synuclein and Aβ aggregates was less stringent. To determine the genes required for aggregate uptake, we used CRISPR/Cas9 to individually knock out the major genes of the HSPG synthesis pathway in HEK293T cells. Knockouts of the extension enzymes exostosin 1 (), exostosin 2 (), and exostosin-like 3 (), as well as -sulfotransferase () or 6--sulfotransferase () significantly reduced tau uptake, consistent with our biochemical findings, and knockouts of , or but not reduced α-synuclein uptake. In summary, tau aggregates display specific interactions with HSPGs that depend on GAG length and sulfate moiety position, whereas α-synuclein and Aβ aggregates exhibit more flexible interactions with HSPGs. These principles may inform the development of mechanism-based therapies to block transcellular propagation of amyloid protein-based pathologies.
细胞间传播蛋白聚集物“种子”被认为介导了在神经退行性疾病tau 病和α-突触核蛋白病中的进展。我们之前报道过,tau 和α-突触核蛋白聚集物与细胞表面的硫酸乙酰肝素蛋白聚糖(HSPGs)结合,促进细胞摄取和细胞内播种。然而,这些蛋白聚集物与 HSPGs 的特异性和结合模式仍不清楚。在这里,我们通过修饰肝素来测量直接相互作用,以确定 tau、α-突触核蛋白和β-淀粉样蛋白(Aβ)聚集物与糖胺聚糖(GAG)结合的大小和硫酸化要求。改变 GAG 的长度和硫酸化模式,我们接下来在细胞基础测定中用肝素衍生物进行竞争研究。tau 聚集物需要精确的 GAG 结构,带有定义的硫酸基在 - 和 6--位,而α-突触核蛋白和 Aβ 聚集物的结合则不那么严格。为了确定摄取聚集物所需的基因,我们使用 CRISPR/Cas9 在 HEK293T 细胞中分别敲除 HSPG 合成途径的主要基因。延伸酶外切聚糖 1()、外切聚糖 2()和外切聚糖样 3()的基因敲除,以及 - 硫酸转移酶()或 6--硫酸转移酶()的基因敲除,显著降低了 tau 的摄取,与我们的生化发现一致,并且外切聚糖 1()或 6--硫酸转移酶()的基因敲除而不是 - 硫酸转移酶()的基因敲除降低了α-突触核蛋白的摄取。总之,tau 聚集物与 HSPGs 之间存在特异性相互作用,这种相互作用取决于 GAG 的长度和硫酸基位置,而α-突触核蛋白和 Aβ 聚集物与 HSPGs 之间的相互作用则更为灵活。这些原则可能为基于机制的疗法的发展提供信息,以阻止基于淀粉样蛋白的病理学的细胞间传播。