Goff Jamie, Khalifa Maryam, Short Shaina M, van der Graaf Piet H, Geerts Hugo
Certara Predictive Technologies, Sheffield, UK.
Certara Predictive Technologies, Radnor, Pennsylvania, USA.
CPT Pharmacometrics Syst Pharmacol. 2025 Jul;14(7):1168-1178. doi: 10.1002/psp4.70035. Epub 2025 Apr 28.
The spatial progression hypothesis of misfolded tau and alpha-synuclein proteins in Alzheimer's and Parkinson's Disease proposes the release of proteins from a presynaptic membrane followed by diffusion over the synaptic cleft and uptake by the postsynaptic membrane in the afferent neuron. A number of antibodies aiming to reduce this neuronal uptake by capturing these proteins in the extracellular space are currently in clinical development, so far without much success. For modeling the interaction between antibodies and misfolded proteins in the extremely small synaptic volume with only a few proteins navigating a crowded environment of transsynaptic proteins, traditional assumptions of ordinary differential equations (ODEs) break down. Here we use spatial Monte Carlo calculations of individual molecule trajectories in a realistic geometrical environment using the open-source software Mcell (mcell.org). For several different densities of transsynaptic proteins, we show that due to geometric constraints, less than 0.5% of the antibody in the brain interstitial fluid (ISF) can enter the crowded synaptic cleft. As a consequence, uptake of the seed-competent proteins is reduced by less than 10%, even at the highest concentration and for selective antibodies. Only the seed-competent protein that escapes the synaptic cleft (between 15% and 30%) is captured by the antibody. Given the extremely low penetrance of the antibodies, it is close to impossible for antibodies to interfere with the uptake mechanism that takes place in the synaptic cleft. These simulations using a detailed and realistic biological environment provide a possible explanation for the clinical trial failures of anti-tau and anti-αsynuclein antibodies.
阿尔茨海默病和帕金森病中错误折叠的tau蛋白和α-突触核蛋白的空间进展假说提出,蛋白质从突触前膜释放,随后在突触间隙扩散并被传入神经元的突触后膜摄取。目前有一些旨在通过在细胞外空间捕获这些蛋白质来减少这种神经元摄取的抗体正在进行临床试验,但迄今为止成效不大。对于在极其微小的突触体积中模拟抗体与错误折叠蛋白质之间的相互作用,其中只有少数蛋白质在跨突触蛋白质的拥挤环境中移动,常微分方程(ODEs)的传统假设不再适用。在这里,我们使用开源软件Mcell(mcell.org)在真实几何环境中对单个分子轨迹进行空间蒙特卡罗计算。对于几种不同密度的跨突触蛋白质,我们表明,由于几何限制,脑间质液(ISF)中不到0.5%的抗体能够进入拥挤的突触间隙。因此,即使在最高浓度下使用选择性抗体,具有种子活性的蛋白质摄取减少也不到10%。只有逃离突触间隙的具有种子活性的蛋白质(15%至30%)会被抗体捕获。鉴于抗体的极低渗透率,抗体几乎不可能干扰在突触间隙发生的摄取机制。这些使用详细且真实生物环境的模拟为抗tau和抗α-突触核蛋白抗体的临床试验失败提供了一种可能的解释。